所属成套资源:2021年中考数学几何加强版训练卷(原卷及解析卷)合集
中考数学几何模型加强版 模型25 步步高型解直角三角形
展开这是一份中考数学几何模型加强版 模型25 步步高型解直角三角形,文件包含模型25步步高型解直角三角形原卷版docx、模型25步步高型解直角三角形解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
专题25步步高型解直角三角形
一、单选题
1.如图,竖直放置的杆,在某一时刻形成的影子恰好落在斜坡的D处,而此时1米的杆影长恰好为1米,现量得为10米,为8米,斜与地面成30°角,则杆的高度为( )米.
A. B. C.8 D.6
2.如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为( )
A.22021 B.22020 C.22019 D.22018
二、解答题
3.如图,小明的家在某住宅楼的最顶层,他家对面有一建筑物,他很想知道建筑物的高度,他首先量出到地面的距离为,又测得从处看建筑物底部的俯角为,看建筑物顶部的仰角为且,都与地面垂直,点,,,在同一平面内.
(1)求与之间的距离(结果保留根号);
(2)求建筑物的高度(结果精确到).
参考数据:,,,.
4.如图,在大楼的正前方有一斜坡,米,斜坡的坡度为,高为,在斜坡下的点处测得楼顶B的仰角为,在斜坡上的点处测得楼顶的仰角为,其中在同一直线上.
(1)求的长度;
(2)求大楼的高度.(参考数据:,)
5.如图,在坡角为28°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为10米,落在广告牌上的影子CD的长为6米,求铁塔AB的高.(AB、CD均与水平面垂直,结果保留一位小数,参考数据:sin28°≈0.47,cos28°≈0.88)
6.西安市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为30°,然后向教学楼正方向走了5米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°,已知教学楼高BM=16米,且点A,B,M在同一直线上,求宣传牌AB的高度.(结果保留根号)
7.如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角为,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角为,点A、B、C三点在同一水平线上.
(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:)
六、拓展探索题
8.如图,已知楼高,从楼顶处测得旗杆的俯角为,又从离地面的一窗口测得旗杆顶的仰角为,求旗杆的高.(结果精确到,,)
9.小华和同学们想用一些测量工具和所学的几何知识测量学校旗杆的高度PA,检验自己掌握知识和运用知识的能力.如图所示,旗杆直立于旗台上的点P处,他们的测量方法是:首先,在阳光下,小华站在旗杆影子的顶端F处.此时,量的小华的影长FG=2m小华身高EF=1.6m;然后,在旗杆影子上的点D处,安装测频器CD.测得旗杆顶端A的仰角为49°,量得CD=0.6m,DF=5m,旗台高BP=1.2m.已知在测量过程中,点B、D、F、G在同一水平直线上,点A、P、B在同一条直线上,AB、CD、EF均垂直于BG,求旗杆的高度PA(参考数据:sin49°≈0.8,cos49°≈0.7,tan49°≈1.2).
10.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°, 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
11.如图,在坡角为20°的山坡上有一铁塔AB、其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD=10米,落在广告牌上的影子CD=5米,已知AB,CD均与水平面垂直,请根据相关测量信息,求铁塔AB的高.(sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
12.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点在同一平面内,操控手站在坡度是坡面长的斜坡的底部处遥控无人机,坡顶处的无人机以的速度,沿仰角的方向爬升,时到达空中的点处,求此时无人机离点所在地面的高度(结果精确到参考数据:,,)
13.如图甲楼AB的高为40米,小华从甲楼顶A测乙楼顶C仰角为α=30°,观测乙楼的底部D俯角为β=45°;
(1)求甲、乙两楼之间的距离;
(2)求乙楼的高度(结果保留根号).
14.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
15.如图,某办公大楼正前方有一根高度是15米的旗杆,从办公大楼顶端测得旗杄顶端的俯角是,旗杄底端到大楼前梯坎底边的距离是10米,梯坎坡长是10米,梯坎坡度,求大楼的高.
16.我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面的处测得在处的龙舟俯角为;他登高到正上方的处测得驶至处的龙舟俯角为,问两次观测期间龙舟前进了多少?(结果精确到,参考数据:,,,)
17.如图,在万泉河的右岸边有一高楼,左岸边有一坡度的山坡AF,点A与点B在同一水平线上,AF与AC在同一平面内.某数学兴趣小组为了测量楼BC的高度,在坡底A处测得楼顶C的仰角为45°,然后沿坡面AF上行了米到达点D处,此时在D处测得楼顶C的仰角为30°.
(1)填空:∠DAH = 度, DH = 米;
(2)求楼BC的高度.
18.如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)
19.如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角为60°,此时该同学距地面的高度AE为27米,电梯再上升10米到达D点,此时测得大楼BC楼顶B点的仰角为45°,求大楼BC的高度.(结果保留根号)
20.某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为米的发射塔,如图所示,在山脚平地上的处测得塔底的仰角为,向小山前进米到达点处,测得塔顶的仰角为,求小山的高度.
21.如图,AB是长为,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:,,,)
22.如图所示,某塔观光层的最外沿点为蹦极项目的起跳点.已知点离塔的中轴线的距离为10米,塔高为123米(垂直于地面),在地面处测得点的仰角,从点沿方向前行40米到达点,在处测得塔尖的仰角.
(1)求出点到塔底的距离;(结果保留根号)
(2)求点离地面的高度.(结果精确到1米,参考数据,,)
23.兴隆湖是成都天府新区著名的生态绿地工程.在一次户外综合实践活动中,小明同学所在的兴趣小组用无人机航拍测量云图广场A与南山码头B的直线距离.由于无人机控制距离有限,为了安全,不能直接测量,他们采用如下方法:如图,小明在云图广场A的正上方点C处测得南山码头B的俯角α=17.09°;接着无人机往南山码头B方向水平飞行0.9千米到达点D处,测得此时南山码头B的俯角β=45°.已知AC⊥AB,CD∥AB,请根据测量数据计算A,B两地的距离.(结果精确到0.1km,参考数据:sinα≈0.29,tanα≈0.31,sinβ≈0.71)
24.数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.
(1)求小明从点A到点D的过程中,他上升的高度;
(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
三、填空题
25.2019年,徐州马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅度提升了徐州市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度_____m.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
26.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为_____m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
相关试卷
这是一份中考数学几何模型加强版 模型27 平行线侧M型,文件包含模型27平行线侧M型原卷版docx、模型27平行线侧M型解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
这是一份中考数学几何模型加强版 模型26 其他型解直角三角形,文件包含模型26其他型解直角三角形原卷版docx、模型26其他型解直角三角形解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
这是一份中考数学几何模型加强版 模型23 一字并肩型解直角三角形,文件包含模型23一字并肩型解直角三角形原卷版docx、模型23一字并肩型解直角三角形解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。