所属成套资源:初中数学中考一轮复习专题知识讲解及习题
- 中考总复习:四边形综合复习--巩固练习(提高) 试卷 2 次下载
- 中考总复习:四边形综合复习--知识讲解(提高) 试卷 3 次下载
- 中考总复习:图形的相似--知识讲解(基础) 试卷 2 次下载
- 中考总复习:图形的相似--知识讲解(提高) 试卷 2 次下载
- 中考总复习:图形的相似--巩固练习(提高) 试卷 1 次下载
中考总复习:图形的相似--巩固练习(基础)
展开
这是一份中考总复习:图形的相似--巩固练习(基础),共8页。
中考总复习:图形的相似--巩固练习(基础)【巩固练习】一、选择题1.(2011山东聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( ).A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)2. 如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:⑴DE=1;⑵△ADE∽△ABC;⑶△ADE的面积与△ABC的面积之比为1:4。其中正确的有( ).A. 0个 B.1个 C. 2个 D. 3个 3.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.OA∶OC=OB∶OD,则下列结论中一定正确的是( ).A.①和②相似 B.①和③相似 C.①和④相似 D.②和④相似4.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是( ).A.1 B.2 C.3 D.45.(2015•锦州)如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )A.(2,2),(3,2) B.(2,4),(3,1) C.(2,2),(3,1) D.(3,1),(2,2)6.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是( ).A.①② B.②③ C.②④ D.③④二、填空题7. 如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是________. 第7题 第9题8. 如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长________,面积________.9. 如图,在正三角形中,,,分别是,,上的点,,,,则的面积与的面积之比等于________.10. 将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是________. 11.(2015•连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为 .12. 如图,不等长的两条对角线AC、BD相交于点O,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若,则甲、乙、丙、丁这4个三角形中,一定相似的有________.三、解答题13. 已知线段OA⊥OB,C为OB上中点,D为AO上一点,连AC、BD交于P点.(1)如图1,当OA=OB且D为AO中点时,求的值;(2)如图2,当OA=OB,=时,求tan∠BPC;14.(2016•静安区一模)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF. 15.如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;(3)若过A,D,C三点的圆的半径为,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似.若存在,求出DP的长;若不存在,请说明理由. 16.如图,在矩形ABCD中,AB=4,AD=10,直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边交AB于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.(1)当∠CPD=30°时,求AE的长;(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由. 【答案与解析】一.选择题1.【答案】D.2.【答案】D.3.【答案】B;【解析】由OA:OC=0B:OD,利用对顶角相等,两三角形相似,①与③相似,问题可求.4.【答案】A.5.【答案】C;【解析】∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选:C.6.【答案】B;【解析】①根据平行四边形的对边相等的性质即可求得AO≠BO,即可求得①错误;
②易证△AOE≌△COF,即可求得EO=FO;
③根据相似三角形的判定即可求得△EAM∽△EBN;
④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误.二.填空题7.【答案】.8.【答案】90,270.9.【答案】1:3;【解析】首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.10.【答案】4,.【解析】根据折叠得到BF=B′F,根据相似三角形的性质得到,设BF=x,则CF=8-x,即可求出x的长,得到BF的长11.【答案】.【解析】如图,过点B作EF⊥l2,交l1于E,交l3于F,如图.∵∠BAC=60°,∠ABC=90°,∴tan∠BAC==.∵直线l1∥l2∥l3,∴EF⊥l1,EF⊥l3,∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC,∴△BFC∽△AEB,∴==.∵EB=1,∴FC=.在Rt△BFC中,BC===.在Rt△ABC中,sin∠BAC==,AC===.故答案为.12.【答案】甲和丙相似.【解析】∵,∴AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∴△AOB∽△COD.
故必有甲和丙相似.三.综合题13.【解析】(1)过C作CE∥OA交BD于E,则△BCE∽△BOD得CE=OD=AD;再由△ECP∽△DAP得;(2)过C作CE∥OA交BD于E,设AD=x,AO=OB=4x,则OD=3x,由△BCE∽△BOD得CE=OD=x,再由△ECP∽△DAP得;由勾股定理可知BD=5x,DE=x,则,可得PD=AD=x,则∠BPC=∠DPA=∠A,tan∠BPC=tan∠A=。14.【解析】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EFA=∠BAC,∠EAF=∠B,∴△FAE∽△ABC,∴,∴FA•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF. 15.【解析】(1)作出圆心O,以点O为圆心,OA长为半径作圆. (2)∵CD⊥AC,∴∠ACD=90°.∴AD是⊙O的直径连结OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A=30°,∴∠BCO=∠ACB-∠ACO=120°-30°=90°.∴BC⊥OC,∴BC是⊙O的切线.(3)存在.∵∠BCD=∠ACB-∠ACD=120°-90°=30°,∴∠BCD=∠B,即DB=DC.又∵在Rt△ACD中,DC=AD,∴BD=.①过点D作DP1//OC,则△P1DB∽△COB,,∵BO=BD+OD=,∴P1D=×OC=×=.②过点D作DP2⊥AB,则△BDP2∽△BCO,∴,∵BC=∴.16.【解析】(1)在Rt△PCD中,由tan∠CPD=,得PD==4,∴AP=AD-PD=10-4.由△AEP∽△DPC知,,∴AE==10-12.(2)假设存在满足条件的点P,设DP=x,则AP=10-x.由△AEP∽△DPC,知=2.∴=2,解得x=8.此时AP=4,AE=4符合题意.故存在点P,使△DPC的周长等于△AEP周长的2倍,DP=8.
相关试卷
这是一份中考数学一轮知识复习和巩固练习考点20 图形的相似(基础巩固) (含详解),共12页。
这是一份中考总复习:图形的相似--巩固练习(基础),共8页。
这是一份37中考总复习:图形的相似--巩固练习(基础),共8页。