终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考总复习:四边形综合复习--巩固练习(提高)

    立即下载
    加入资料篮
    中考总复习:四边形综合复习--巩固练习(提高)第1页
    中考总复习:四边形综合复习--巩固练习(提高)第2页
    中考总复习:四边形综合复习--巩固练习(提高)第3页
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考总复习:四边形综合复习--巩固练习(提高)

    展开

    这是一份中考总复习:四边形综合复习--巩固练习(提高),共14页。
    一、选择题
    1.如图,在中,,是上异于、的一点,则的值
    是( ).A.16 B.20 C.25 D.30

    2. 如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当
    时,点应运动到( ). A.处 B.处 C.处 D.处

    3.(2012•孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有( ). A.1个 B.2个 C.3个 D.4个
    4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ).A. 2004 B. 2005 C. 2006 D. 2007
    5.如图所示,已知菱形OABC,点C在x轴上,直线y=x经过点A,菱形OABC的面积是.若反比例函数的图象经过点B,则此反比例函数表达式为( ).
    A. B. C. D.

    6.(2015•河南一模)如图,正方形ABCD的边长为1,将长为1的线段QR的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,按A→B→C→D→A的方向滑动到A停止,同时点R从点B出发,按B→C→D→A→B的方向滑动到B停止,在这个过程中,线段QR的中点M所经过的路线围成的图形面积为( )
    A.B.4﹣πC.πD.
    二、填空题
    7. 如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直
    时,菱形的周长有最小值8,那么菱形周长的最大值是_________.

    第7题 第8题
    8. 如图,在等腰梯形中,,= 4=,=45°.直角三角板含45°角
    的顶点在边上移动,一直角边始终经过点,斜边与交于点.若为等腰三角
    形,则的长等于____________.

    9.(2012•锦州)如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,AnBnBn+1Cn,按如图所示放置,使点A1、A2、A3、A4、…、An在射线OA上,点B1、B2、B3、B4、…、Bn在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,Sn,则Sn=________________-

    第9题 第10题
    10.(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
    11.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为 .

    12.(2015•武汉模拟)如图,直角梯形ABCD中,∠A=90°,∠B=120°,AD=,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.若射线EF经过点C,则AE的长是 .

    三、解答题
    13.如图,在边长为4cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.在运动过程中,设四边形EFGH的面积为S(cm2),运动时间为t(s).
    (1)试证明四边形EFGH是正方形;
    (2)写出S关于t的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?
    (3)是否存在某一时刻t,使四边形EFGH的面积与正方形ABCD的面积比是5:8?若存在,求出t的值;若不存在,请说明理由.

    14.如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片还原,使点D与P重合,得折痕EF(点E、F为折痕与矩形边的交点,再将纸片还原。
    (1)当x=0时,折痕EF的长为 ;当点与E与A重合时,折痕EF的长为 ;
    (2)请求出使四边形EPFD为菱形的x的取值范围,并求出x=2时菱形的边长:
    (3)令EF2为y,当点E在AD,点F在BC上时,写出y与x的函数关系式。当y取最大值时,判断△EAP与△PBF是否相似;若相似,求出x的值;若不相似,请说明理由。
    15.(2014春•青山区期中)如图,在平行四边形ABCD中,AB=6,∠BAD的平分线与BC的延长线交于点E、与DC交于点F,且点F为边DC的中点,∠ADC的平分线交AB于点M,交AE于点N,连接DE
    (1)求证:BC=CE;
    (2)若DM=2,求DE的长.
    16.已知,以AC为边在外作等腰,其中AC=AD.
    (1)如图1,若,AC=BC,四边形ABCD是平行四边形,则 °;
    (2)如图2,若,是等边三角形, AB=3,BC=4.求BD的长;
    (3)如图3,若为锐角,作于H,当时,
    是否成立?若不成立,说明你的理由,若成立,并证明你的结论.

    【答案与解析】
    一.选择题
    1.【答案】A.
    2.【答案】C.
    3.【答案】C.
    【解析】①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;
    ②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;
    ③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;
    ④S△ABD=AB•DE=AB•(BE)=AB•AB=AB2,即④正确.综上可得①②④正确,共3个.
    4.【答案】B.
    根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.
    因为这(k+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k+1)-34= k-33(个),而这些多边形的内角和不少于(k-33) ×180°.
    所以(k+1)×360°≥34×60×180°+(k-33)×180°,解得k≥2005.
    当我们按如下方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便34个六十二边形和33×58个三角形.于是共剪了58+33+33×58=2005(刀).
    5.【答案】C.
    【解析】提示:可得A(1,1),B(1+,1).
    6.【答案】D
    【解析】根据题意得点M到正方形各顶点的距离都为0.5,点M所走的运动轨迹为以正方形各顶点为圆心,以0.5为半径的四个扇形,
    ∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.
    ∵正方形ABCD的面积为1×1=1,4个扇形的面积为4×=,
    ∴点M所经过的路线围成的图形的面积为1﹣=.
    故选:D.
    二.填空题
    7.【答案】17.
    【解析】提示:当两张矩形纸条的对角线重合时,矩形纸条的一条对角线也是菱形的对角线,菱形的对角线有最大值,那么菱形的边长也有最大值。菱形的边长就成为不重叠的两个全等直角三角形的斜边,此时重叠部分的菱形有最大值.
    设菱形边长为x,根据勾股定理,x²=2²+(8-x)², 解得:X=4.25,所以,周长为4×4.25=17.
    8.【答案】.
    9.【答案】.
    【解析】根据正方形性质和等腰直角三角形性质得出OB1=A1B1=1,求出A1C1=A2C1=1,A2C2=A3C2=2,A3C3=A4C3=4,根据三角形的面积公式求出S1=×20×20,S2=×21×21,S3=×22×22,推出Sn=×2n-1×2n-1,求出即可.
    10.【答案】7.
    【解析】如图2所示,
    过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.
    易证△OMA≌△ONB,∴OM=ON,MA=NB.
    ∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.
    ∵OC=6,∴CM=6.∴MA=CM﹣AC=6﹣5=1,
    ∴BC=CN+NB=6+1=7.
    11.【答案】﹣1.
    【解析】解:连接AE,BE,DF,CF.
    ∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,
    ∴AB=AE=BE,∴△AEB是等边三角形,∴边AB上的高线为:,
    同理:CD边上的高线为:,
    延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,
    ∵AE=BE,∴点E在AB的垂直平分线上,
    同理:点F在DC的垂直平分线上,
    ∵四边形ABCD是正方形,∴AB∥DC,∴MN⊥AB,MN⊥DC,
    设F到AB到距离为x,E到DC的距离为x′,EF=y,
    由题意可知:x=x′,则x+y+x=1,
    ∵x+y=,∴x=1﹣,∴EF=1﹣2x=﹣1.
    12.【答案】2或5.
    【解析】过点B作BH⊥DC,延长AB至点M,过点C作CM⊥AB于M,则BH=AD=MF=,
    ∵∠ABC=120°,AB∥CD,
    ∴∠BCH=60°,
    ∴CH=BM==1,
    设AE=x,则BE=6﹣x,
    在Rt△EFM中,EF==,
    ∵AB∥CD,
    ∴∠EFD=∠BEC,
    ∵∠DEF=∠B=120°,
    ∴△EDF∽△BCE,即△EDF∽△BFE,
    ∴,
    ∴EF2=DF•BE,即(7﹣x)2+3=7(6﹣x),
    解得x=2或5.
    故答案为:2或5.
    三.综合题
    13.【解析】(1)∵点E,F,G,H在四条边上的运动速度相同,
    ∴AE=BF=CG=DH,
    在正方形ABCD中,∠A=∠B=∠C=∠D=90°,
    且AB=BC=CD=DA,
    ∴EB=FC=GD=HA,
    ∴△AEH≌△BFE≌△CGF≌△DHG(SAS),
    ∴EH=FE=GF=HG(全等三角形的对应边相等),
    ∠AEH=∠BFE(全等三角形的对应角相等),
    ∴四边形EFGH是菱形.(四条边相等的四边形是菱形),
    又∵∠BEF+∠BFE=90°,
    ∴∠BEF+∠AEH=90°,
    ∴∠FEH=180°-(∠BEF+∠AEH)=90°,
    ∴四边形EFGH为正方形.(有一个角是直角的菱形是正方形).
    (2)∵运动时间为t(s),运动速度为1cm/s,
    ∴AE=tcm,AH=(4-t)cm,
    由(1)知四边形EFGH为正方形,
    ∴S=EH2=AE2+AH2=t2+(4-t)2
    即S=2t2-8t+16=2(t-2)2+8,
    当t=2秒时,S有最小值,最小值是8cm2;
    (3)存在某一时刻t,使四边形EFGH的面积与正方形ABCD的面积比是5:8.
    ∵S=S正方形ABCD,
    ∴2(t-2)2+8=×16,∴t1=1,t2=3;
    当t=1或3时,
    四边形EFGH的面积与正方形ABCD的面积的比是5:8.
    14.【解析】(1)∵纸片折叠,使点D与点P重合,得折痕EF,
    当AP=x=0时,点D与点P重合,即为A,D重合,B,C重合,那么EF=AB=CD=3;
    当点E与点A重合时,
    ∵点D与点P重合是已知条件,
    ∴∠DEF=∠FEP=45°,
    ∴∠DFE=45°,
    即:ED=DF=1,
    利用勾股定理得出EF=
    ∴折痕EF的长为;
    (2)∵要使四边形EPFD为菱形,
    ∴DE=EP=FP=DF,
    只有点E与点A重合时,EF最长为,此时x=1,
    当EF最短时,即EF=BC,此时x=3,
    ∴探索出1≤x≤3
    当x=2时,如图,连接DE、PF.
    ∵EF是折痕,
    ∴DE=PE,设PE=m,则AE=2-m
    ∵在△ADE中,∠DAE=90°,
    ∴AD2+AE2=DE2,即12+(2-m)2=m2
    解得m=,此时菱形EPFD的边长为.
    (3)过E作EH⊥BC;
    ∵∠OED+∠DOE=90°,∠FEO+∠EOD=90°,
    ∴∠ODE=∠FEO,
    ∴△EFH∽△DPA,
    ∴,
    ∴FH=3x;
    ∴y=EF2=EH2+FH2=9+9x2;
    当F与点C重合时,如图,连接PF;
    ∵PF=DF=3,
    ∴PB==2,
    ∴0≤x≤3-2.
    15.【解析】(1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠DAF=∠FEC,∠ADF=∠ECF,
    ∵点F为边DC的中点,
    ∴DF=CF,
    在△ADF和△ECF中,
    ∴△ADF≌△ECF(AAS),
    ∴AD=CE,
    ∴BC=CE.
    (2)解:如图,连接FM,
    ∵DM平分∠ADF,AF平分∠DAB,AB∥DC,AD∥BC,
    ∴∠DAF=∠BAF=DFN,∠ADM=∠FDM=∠AMD,
    ∴AD=DF=AM,
    ∴四边形AMFD是菱形,
    ∴AF⊥DM,DN=MN=DM=1,
    又∵DF=FC,DC=AB=6,
    ∴AM=3,
    ∴AN==2,
    ∴AF=2AN=4,
    ∵AF=EF,
    ∴NE=AE﹣AN=6,
    ∴DE==.
    16. 【解析】(1)45;
    (2)如图2,以A为顶点AB为边在外作=60°,并在AE上取AE=AB,连结BE和CE.
    ∵是等边三角形,
    ∴AD=AC,=60°.
    ∵=60°,
    ∴+=+.
    即=.
    ∴≌.
    ∴EC=BD.
    ∵=60°,AE=AB=3,
    ∴是等边三角形,
    ∴=60°, EB= 3,
    ∵,
    ∴.
    ∵,EB=3,BC=4,
    ∴EC=5.
    ∴BD=5.
    SHAPE \* MERGEFORMAT (3)=2成立.
    以下证明:
    如图3,过点B作BE∥AH,并在BE上取BE=2AH,连结EA,EC. 并取BE的中点K,连结AK.
    ∵于H,
    ∴.
    ∵BE∥AH,
    ∴.
    ∵,BE=2AH,
    ∴.
    ∵,
    ∴EC=BD.
    ∵K为BE的中点,BE=2AH,
    ∴BK=AH.
    ∵BK∥AH,
    ∴四边形AKBH为平行四边形.
    又∵,
    ∴四边形AKBH为矩形.
    ∴.
    ∴AK是BE的垂直平分线.
    ∴AB=AE.
    ∵AB=AE,EC=BD,AC=AD,
    ∴≌.
    ∴.
    ∴.
    即.
    ∵,为锐角,
    ∴.
    ∵AB=AE,
    ∴.
    ∴.
    ∴=2.
    ∴=2.

    相关试卷

    14中考总复习:方程与不等式综合复习--巩固练习(提高):

    这是一份14中考总复习:方程与不等式综合复习--巩固练习(提高),共6页。

    08中考总复习:数与式综合复习--巩固练习(提高):

    这是一份08中考总复习:数与式综合复习--巩固练习(提高),共6页。

    中考总复习:圆综合复习--巩固练习(提高):

    这是一份中考总复习:圆综合复习--巩固练习(提高),共14页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map