年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)

    立即下载
    加入资料篮
    中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)第1页
    中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)第2页
    中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)第3页
    还剩15页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)

    展开

    这是一份中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高),共1页。主要包含了考纲要求,知识网络,考点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
    责编:常春芳
    【考纲要求】
    ⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;
    ⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;
    ⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.
    【知识网络】

    【考点梳理】
    考点一、平面直角坐标系
    1.平面直角坐标系
    平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.
    2.各象限内点的坐标的特点、坐标轴上点的坐标的特点
    点P(x,y)在第一象限;
    点P(x,y)在第二象限;
    点P(x,y)在第三象限;
    点P(x,y)在第四象限;
    点P(x,y)在x轴上,x为任意实数;
    点P(x,y)在y轴上,y为任意实数;
    点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0).
    3.两条坐标轴夹角平分线上点的坐标的特征
    点P(x,y)在第一、三象限夹角平分线上x与y相等;
    点P(x,y)在第二、四象限夹角平分线上x与y互为相反数.
    4.和坐标轴平行的直线上点的坐标的特征
    位于平行于x轴的直线上的各点的纵坐标相同;
    位于平行于y轴的直线上的各点的横坐标相同.
    5.关于x轴、y轴或原点对称的点的坐标的特征
    点P与点p′关于x轴对称横坐标相等,纵坐标互为相反数;
    点P与点p′关于y轴对称纵坐标相等,横坐标互为相反数;
    点P与点p′关于原点对称横、纵坐标均互为相反数.
    6.点P(x,y)到坐标轴及原点的距离
    (1)点P(x,y)到x轴的距离等于;
    (2)点P(x,y)到y轴的距离等于;
    (3)点P(x,y)到原点的距离等于.
    7.在平面直角坐标系内两点之间的距离公式
    如果直角坐标平面内有两点,那么A、B两点的距离为:
    .
    两种特殊情况:
    (1)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:
    (2)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:
    要点诠释:
    (1)注意:x轴和y轴上的点,不属于任何象限;
    (2)平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标.
    考点二、函数
    1.函数的概念
    设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.
    2.自变量的取值范围
    对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.
    3.表示方法
    ⑴解析法;⑵列表法;⑶图象法.
    4.画函数图象
    (1)列表:列表给出自变量与函数的一些对应值;
    (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
    要点诠释:
    (1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;
    (2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.
    考点三、几种基本函数(定义→图象→性质)
    1.正比例函数及其图象性质
    (1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.
    (2)正比例函数y=kx( k≠0)的图象:
    过(0,0),(1,K)两点的一条直线.

    (3)正比例函数y=kx (k≠0)的性质
    ①当k>0时,图象经过第一、三象限,y随x的增大而增大;
    ②当k<0时,图象经过第二、四象限,y随x的增大而减小 .
    2.一次函数及其图象性质
    (1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.
    (2)一次函数y=kx+b(k≠0)的图象

    (3)一次函数y=kx+b(k≠0)的图象的性质
    一次函数y=kx+b的图象是经过(0,b)点和点的一条直线.
    ①当k>0时,y随x的增大而增大;
    ②当k0
    k0时,函数图像的两个分支分别
    在第一、三象限.在每个象限内,y
    随x 的增大而减小.
    ①x的取值范围是x0,
    y的取值范围是y0;
    ②当k

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map