江苏2020中考一轮复习培优 第19课时 等腰三角形 练习课件
展开
课时训练(十九) 等腰三角形(限时:40分钟)|夯实基础|1.如图K19-1,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为 ( )图K19-1A.50° B.51° C.51.5° D.52.5°2.[2017·雅安]一个等腰三角形的底边长是6,腰长是一元二次方程x2-7x+12=0的一根,此三角形的周长是 ( )A.12 B.13C.14 D.12或143.[2018·淄博]如图K19-2,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为 ( )图K19-2A.4 B.6 C.4 D.84.[2017·天津]如图K19-3,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是 ( )图K19-3A.BC B.CE C.AD D.AC5.[2016·无锡]如图K19-4,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 ( )图K19-4A. B.2 C.3 D.26.[2018·临沂]如图K19-5,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1.则DE的长是 ( )图K19-5A. B.2C.2 D.7.[2019·常德] 如图K19-6,△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD绕点A逆时针旋转45°得到△ACD',且点D',D,B三点在同一直线上,则∠ABD的度数是 . 图K19-68.[2019·东营] 如图K19-7,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是 . 图K19-79.[2016·泰州]如图K19-8,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于 . 图K19-810.[2018·遵义]如图K19-9,△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点,若∠CAE=16°,则∠B为 度. 图K19-911.[2019·眉山]如图K19-10,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.图K19-10 12.[2018·宁波]如图K19-11,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.图K19-11 13.[2019·重庆B卷]如图K19-12,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F,求证:AE=FE.图K19-12 |拓展提升|14.[2018·绵阳]如图K19-13,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为 ( )图K19-13A. B.3-C.-1 D.3-15.[2017·连云港]如图K19-14,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.图K19-14
【参考答案】1.D [解析]∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED.∵∠B+∠DCB=∠CDA=50°,∴∠B=25°.∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°-25°)=77.5°,∴∠CDE=180°-∠CDA-∠EDB=180°-50°-77.5°=52.5°,故选D.2.C [解析]一元二次方程x2-7x+12=0的两根分别为3,4,所以腰长有两种情况:①腰长为3,底边长为6,此时三角形三边关系为3+3=6,不符合“三角形任意两边之和大于第三边”,故不成立;②腰长为4,此时三角形三边符合“三角形任意两边之和大于第三边”,所以周长为4+4+6=14.3.B [解析]∵MN∥BC,∴∠ANM=∠ACB,∠NMC=∠MCB,∵CM平分∠ACB,∴∠MCB=∠MCN=∠ACB,∴∠NMC=∠NCM,∴MN=NC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠AMC,∴∠AMN=∠ACB=∠ANM,∵∠A=90°,∴∠AMN=30°,∵AN=1,∴MN=2,∴NC=2,∴AC=3,∵∠B=∠AMN=30°,∴BC=2AC=6,故选B.4.B [解析]由AB=AC,可得△ABC是等腰三角形,根据“等腰三角形的三线合一”可知点B与点C关于直线AD对称,连接CP,则BP=CP,因此BP+EP的最小值为CE,故选B.5.A [解析]∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°-∠ABC=60°,AB=4,BC=2.∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°.∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,∴BD=DB1=,又∵BA1=2,∠A1BB1=90°,∴A1D==.故选A.6.B [解析]∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠DAC+∠DCA=90°,∵∠ACB=90°,∴∠ECB+∠DCA=90°,∴∠DAC=∠ECB,又∵AC=CB,∴△ACD≌△CBE,∴CE=AD=3,CD=BE=1,∴DE=CE-CD=3-1=2,故选B.7.22.5° [解析]根据题意可知△ABD≌△ACD',∴∠BAC=∠CAD'=45°,AD'=AD,∴∠ADD'=∠AD'D==67.5°,∵D',D,B三点在同一直线上,∴∠ABD=∠ADD'-∠BAC=22.5°.8.,0 [解析]设CE交x轴于点F,因为△ACE是等边三角形,所以∠CAD=30°,那么CF=AC=1.由勾股定理求得AF=.因为CD2=DF2+CF2,CD=2DF,所以可求得DF=.由“HL”定理易知△ABO与△DCF全等,所以AO=DF=.所以OD=AF-AO-DF==,即点D的坐标为,0.9.20° [解析]过点A作AD∥l1,如图,则∠BAD=∠α=40°.∵l1∥l2,∴AD∥l2.∴∠DAC=∠β.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠DAC=∠BAC-∠BAD=60°-40°=20°.10.37 [解析]因为AD=AC,E为CD的中点,所以∠DAC=2∠CAE=32°,所以∠ADC=(180°-∠DAC)=74°,因为BD=AD,所以∠B=∠ADC=37°.11.证明:∵AE=BE,∴∠EAB=∠EBA,∵DC∥AB,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB.在△DEA和△CEB中,∴△DEA≌△CEB(SAS),∴∠D=∠C.12.解:(1)证明:∵线段CD绕点C按逆时针方向旋转90°得到线段CE,∴∠DCE=90°,CD=CE.又∵∠ACB=90°,∴∠ACB=∠DCE,∴∠ACD=∠BCE.在△ACD和△BCE中,∵∴△ACD≌△BCE.(2)∵∠ACB=90°,AC=BC,∴∠A=45°,∵△ACD≌△BCE,∴AD=BE,∠CBE=∠A=45°.又AD=BF,∴BE=BF,∴∠BEF=∠BFE==67.5°.13.解:(1)(方法一):∵AB=AC,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B-∠C=180°-42°-42°=96°.∵AD⊥BC,∴∠BAD=∠BAC=×96°=48°.(方法二):∵AB=AC,∠C=42°,∴∠B=∠C=42°.∵AD⊥BC于点D,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF∥AC,∴∠CAF=∠F,∵AB=AC,AD⊥BC,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AE=FE. 14.D [解析]过点A作AF⊥CE于点F,设AB与CD的交点为M,过点M作MN⊥AC于点N,如图所示.∵△ECD为等腰直角三角形,CE=CD,∴∠E=45°.∵AE=,AD=,∴AF=EF=1,CE=CD==1+,∴CF=,∴AC==2,∠ACF=30°,∴∠ACD=60°.设MN=x,∵△ABC为等腰直角三角形,CA=CB,∴∠CAB=45°,∴AN=MN=x,又∵CN==x,∴AC=AN+CN=x+x=2,解得x=3-,∴S阴影=S△ACM=×AC×MN=3-.故选D.15.解:(1)∠ABE=∠ACD.理由如下:因为AB=AC,∠BAE=∠CAD,AE=AD,所以△ABE≌△ACD.所以∠ABE=∠ACD.(2)证明:因为AB=AC,所以∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,所以∠FBC=∠FCB,所以FB=FC.又因为AB=AC,所以点A,F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.