人教版新课标A必修11.1.2集合间的基本关系优质教学设计
展开1.1.2 集合间的基本关系
教学目标:1.理解子集、真子集概念;
2.会判断和证明两个集合包含关系;
3.理解“⊂≠ ”、“⊆”的含义;
4.会判断简单集合的相等关系;
5.渗透问题相对的观点。
教学重点:子集的概念、真子集的概念
教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算
教学方法:讲、议结合法
教学过程:
(I)复习回顾
问题1:元素与集合之间的关系是什么?
问题2:集合有哪些表示方法?集合的分类如何?
(Ⅱ)讲授新课
观察下面几组集合,集合A与集合B具有什么关系? (1) A={1,2,3},B={1,2,3,4,5}. (2) A={x|x>3},B={x|3x-6>0}. (3) A={正方形},B={四边形}. (4) A=,B={0}. (5)A={银川九中高一(11)班的女生},B={银川九中高一(11)班的学生}。 |
通过观察就会发现,这五组集合中,集合A都是集合B的一部分,从而有:
1.子集
定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作AB(或BA),即若任意xA,有xB,则AB(或AB)。 这时我们也说集合A是集合B的子集(subset)。 如果集合A不包含于集合B,或集合B不包含集合A,就记作A⊈B(或B⊉A),即:若存在xA,有xB,则A⊈B(或B⊉A) |
说明:AB与BA是同义的,而AB与BA是互逆的。
规定:空集是任何集合的子集,即对于任意一个集合A都有A。
例1.判断下列集合的关系. (1) N_____Z; (2) N_____Q; (3) R_____Z; (4) R_____Q; (5) A={x| (x-1)2=0}, B={y|y2-3y+2=0}; (6) A={1,3}, B={x|x2-3x+2=0}; (7) A={-1,1}, B={x|x2-1=0}; (8)A={x|x是两条边相等的三角形} B={x|x是等腰三角形}。 |
问题3:观察(7)和(8),集合A与集合B的元素,有何关系?
集合A与集合B的元素完全相同,从而有:
2.集合相等
定义:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素(即AB),同时集合B的任何一个元素都是集合A的元素(即BA),则称集合A等于集合B,记作A=B。如:A={x|x=2m+1,mZ},B={x|x=2n-1,nZ},此时有A=B。 |
问题4:(1)集合A是否是其本身的子集?(由定义可知,是)
(2)除去与A本身外,集合A的其它子集与集合A的关系如何?(包含于A,但不等于A)
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)AA (任何集合都是其自身的子集);
(2)若AB,而且AB(即B中至少有一个元素不在A中),则称集合A是集合B的真子集(proper subset),记作A⊂≠ B。(空集是任何非空集合的真子集)
(3)对于集合A,B,C,若A⊆B,B⊆C,即可得出A⊆C;对A⊂≠ B,B⊂≠ C,同样有A⊂≠ C, 即:包含关系具有“传递性”。
4.证明集合相等的方法:
(1) 证明集合A,B中的元素完全相同;(具体数据)
(2) 分别证明AB和BA即可。(抽象情况)
对于集合A,B,若AB而且BA,则A=B。
(III) 例题分析:
例2.判断下列两组集合是否相等? (1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数} 例3.(教材P8例3)写出{a,b}的所有子集,并指出其中哪些是它的真子集. 例4.解不等式x-3>2,并把结果用集合表示。 结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个,特别地,空集的子集个数为1,真子集个数为0。 |
(IV) 课堂练习
(1)NZQR; (2)AA; (3){圆内接梯形}{等腰梯形}; (4)NZ; (5){}; (6){} 4.有三个元素的集合A,B,已知A={2,x,y},B={2x,2,2y},且A=B,求x,y的值。 |
(V)课时小结
- 能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;
注意:子集并不是由原来集合中的部分元素组成的集合。(因为:“空集是任何集合的子集”,但空集中不含任何元素;“A是A的子集”,但A中含有A的全部元素,而不是部分元素)。
2. 空集是任何集合的子集,是任何非空集合的真子集;
3. 注意区别“包含于”,“包含”,“真包含”,“不包含”;
4. 注意区别“”与“”的不同涵义。 (与{}的关系)
(VI)课后作业
- 书面作业
(1)课本P13,习题1.1A组题第5、6题。
(2)用图示法表示 (1)AB (2)A⊈B
2. 预习作业
(1)预习内容:课本P9—P12
(2)预习提纲:
(1)并集和交集的含义及求法。
(2)求一个集合的补集应具备条件是什么?
(3)能正确表示一个集合的补集。.
教学后记
人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算第1课时教案: 这是一份人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算第1课时教案,共4页。教案主要包含了教学目标,教学重难点等内容,欢迎下载使用。
人教版新课标B必修31.1.2程序框图教学设计: 这是一份人教版新课标B必修31.1.2程序框图教学设计,共3页。教案主要包含了学习目标,学习重点,学习难点等内容,欢迎下载使用。
高中数学1.1.2程序框图教学设计: 这是一份高中数学1.1.2程序框图教学设计,共4页。教案主要包含了复习已有概念,巩固原先基础,直观导入,初步感知概念,引导探究,理解新知,引导辨析,掌握本质,巧设练习,拓展新知等内容,欢迎下载使用。