还剩23页未读,
继续阅读
所属成套资源:2021年中考数学 专项突破(几何函数难点知识全面讲义)
成套系列资料,整套一键下载
中考数学 专项训练 考点67 费马点中三线段和对称模型与最值问题
展开
专题67 (1)费马点中三线段模型与最值问题
【专题说明】
费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:
(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.
费马点问题解题的核心技巧:
旋转60° 构造等边三角形 将“不等三爪图”中三条线段转化至同一直线上 利用两点之间线段最短求解问题
【模型展示】
问题:在△ABC内找一点P,使得PA+PB+PC最小.
【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.
(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.
(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.
(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)
(4)以BC为边作等边△BCF,连接AF,必过点P,有∠PAB=∠BPC=∠CPA=120°.
在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.
有这两个结论便足以说明∠PAB=∠BPC=∠CPA=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!
【例题】
1、如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )
A. B. C. D.
【解析】如图,
∵将△ABG绕点B逆时针旋转60°得到△EBF,
∴BE=AB=BC,BF=BG,EF=AG,
∴△BFG是等边三角形.∴BF=BG=FG,.
∴AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,
∴当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,
过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=180°-120°=60°,
∵BC=4,∴BF=2,EF=2,在Rt△EFC中,
∵EF2+FC2=EC2,∴EC=4.
∵∠CBE=120°,∴∠BEF=30°,
∵∠EBF=∠ABG=30°,∴EF=BF=FG,
∴EF=CE=,
故选:D.
2、如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
【解析】如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,
显然△MOP为等边三角形,∴OM+OG=OP+PQ,
∴点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,
∴当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,
此时,∠NMQ=75°+60°=135°,
过Q作QA⊥NM交NM的延长线于A,则∠MAQ=90°,
∴∠AMQ=180°-∠NMQ=45°,
∵MQ=MG=4,
∴AQ=AM=MQ•cos45°=4,
∴NQ=,
故答案为:
3、如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
【解析】
将△BMN绕点B顺时针旋转60度得到△BNE,
∵BM=BN,∠MBN=∠CBE=60°,
∴MN=BM
∵MC=NE
∴AM+MB+CM=AM+MN+NE.
当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,
∴BH⊥AE,AH=EH,∠BAH=30°,
∴BH=AB=3,AH=BH=,
∴AE=2AH=.
故答案为.
4、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.
【解析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.
∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,
∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,
∵MG=PB,AG=AP,∠GAP=60°,
∴△GAP是等边三角形,
∴PA=PG,
∴PA+PB+PC=CP+PG+GM,
∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,
∵AP+BP+CP的最小值为2,∴CM=2,
∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,
作BN⊥AC于N.则BN=AB=1,AN=,CN=2-,
∴BC=.
故答案为.
5、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
E
A D
B C
N
M
F
E
A D
B C
N
M
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为时,求正方形的边长.
【解析】⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.
∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.,即∠BMA=∠NBE.
又∵MB=NB,∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小
理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.
∵∠MBN=60°,MB=NB,∴△BMN是等边三角形,∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=.
解得,x=(舍去负值).
∴正方形的边长为
6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法); ②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
【解析】(1)①如图△DCF即为所求;
②∵四边形ABCD是正方形,∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,
∴AC==AB=4,
∵△ADE绕点D逆时针旋转90°得到△DCF,∴∠DCF=∠DAE=45°,AE=CF,
∴∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4−x,
∴y=(4−x)2+x2=2x2−8x+160(0<x≤4).即y=2(x−2)2+8,
∵2>0,∴x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∴8≤EF2≤16.
(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.
由旋转的性质可知,△AEG是等边三角形,∴AE=EG,
∵DF≤FG+EG+DE,BE=FG,∴AE+BE+DE的最小值为线段DF的长.
在Rt△AFH中,∠FAH=30°,AB==AF,∴FH=AF=,AH==,
Rt△DFH中,DF==,∴BE+AE+ED最小值为
专题 (2)费马点中的对称模型与最值问题
【专题说明】
利用轴对称的性质,把三线段问题通过做对称转化为两点之间线段最短的问题进而解题。
【例题】
1、如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.
【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!
如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,即可得出结果.
2、如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
【分析】依然构造60°旋转,将三条折线段转化为一条直线段.
分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,
易证△AMD≌△AGF,∴MD=GF
∴ME+MA+MD=ME+EG+GF
过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值.
3、如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.
【解析】
如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵点P关于OA的对称点为C,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=3.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.
4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )
A. B. C. D.
【解析】分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,
则点A的坐标为(1,3)、B点坐标为(3,1),
作A点关于y轴的对称点P,B点关于x轴的对称点Q,
所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),
连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,
四边形ABCD周长=DA+DC+CB+AB
=DP+DC+CQ+AB
=PQ+AB
=
=4+2
=6,
故选B.
5、如图所示,,点为内一点,,点分别在上,求周长的最小值.
【解析】如图,作P关于OA、OB的对称点,连结、,交OA、OB于M、N,此时周长最小,根据轴对称性质可知,,,且,,,,为等边三角形,即周长的最小值为8.
6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【解析】(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,
解得:k=,b=.∴直线AE的解析式为y=x+.
(2)设直线CE的解析式为y=mx﹣,
将点E的坐标代入得:4m﹣=,解得:m=.
∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.
设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),
则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面积=×(x2+x)×4=﹣x2+x.
∴当x=2时,△EPC的面积最大.
∴P(2,﹣).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.
∵K是CB的中点,
∴k(,﹣).
∵点H与点K关于CP对称,
∴点H的坐标为(,﹣).
∵点G与点K关于CD对称,
∴点G(0,0).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值为3.
(3)如图3所示:
∵y′经过点D,y′的顶点为点F,
∴点F(3,﹣).
∵点G为CE的中点,
∴G(2,).
∴FG=.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y=对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a+=,解得:a=﹣.
∴点Q1的坐标为(3,﹣).
综上所述,点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).
7、已知,如图,二次函数图象的顶点为,与轴交于、两点(点在点右侧),点、关于直线:对称.
(1)求、两点的坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点B作直线交直线于K点,M、N分别为直线AH和直线上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.
【解析】(1)依题意,得ax2+2ax−3a=0(a≠0),
两边都除以a得x2+2x−3=0,解得x1=−3,x2=1,
∵B点在A点右侧,∴A点坐标为(−3,0),B点坐标为(1,0),
答:A. B两点坐标分别是(−3,0),(1,0).
证明:∵直线l:y=,
当x=−3时,y=,∴点A在直线l上.
(2)∵点H、B关于过A点的直线l:y=对称,∴AH=AB=4,
过顶点H作HC⊥AB交AB于C点,
则AC=,∴顶点H,
代入二次函数解析式,解得a=,
∴二次函数解析式为,
答:二次函数解析式为.
(3)直线AH的解析式为,
直线BK的解析式为,由,解得,即K(3,2),则BK=4,
∵点H、B关于直线AK对称,K(3,2),∴HN+MN的最小值是MB,
过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,
则QM=MK,QE=EK=2,AE⊥QK,
∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,
∵BK∥AH,∴∠BKQ=∠HEQ=90∘,
由勾股定理得QB=
∴HN+NM+MK的最小值为8,
【专题说明】
费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:
(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.
费马点问题解题的核心技巧:
旋转60° 构造等边三角形 将“不等三爪图”中三条线段转化至同一直线上 利用两点之间线段最短求解问题
【模型展示】
问题:在△ABC内找一点P,使得PA+PB+PC最小.
【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.
(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.
(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.
(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)
(4)以BC为边作等边△BCF,连接AF,必过点P,有∠PAB=∠BPC=∠CPA=120°.
在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.
有这两个结论便足以说明∠PAB=∠BPC=∠CPA=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!
【例题】
1、如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )
A. B. C. D.
【解析】如图,
∵将△ABG绕点B逆时针旋转60°得到△EBF,
∴BE=AB=BC,BF=BG,EF=AG,
∴△BFG是等边三角形.∴BF=BG=FG,.
∴AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,
∴当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,
过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=180°-120°=60°,
∵BC=4,∴BF=2,EF=2,在Rt△EFC中,
∵EF2+FC2=EC2,∴EC=4.
∵∠CBE=120°,∴∠BEF=30°,
∵∠EBF=∠ABG=30°,∴EF=BF=FG,
∴EF=CE=,
故选:D.
2、如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
【解析】如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,
显然△MOP为等边三角形,∴OM+OG=OP+PQ,
∴点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,
∴当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,
此时,∠NMQ=75°+60°=135°,
过Q作QA⊥NM交NM的延长线于A,则∠MAQ=90°,
∴∠AMQ=180°-∠NMQ=45°,
∵MQ=MG=4,
∴AQ=AM=MQ•cos45°=4,
∴NQ=,
故答案为:
3、如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
【解析】
将△BMN绕点B顺时针旋转60度得到△BNE,
∵BM=BN,∠MBN=∠CBE=60°,
∴MN=BM
∵MC=NE
∴AM+MB+CM=AM+MN+NE.
当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,
∴BH⊥AE,AH=EH,∠BAH=30°,
∴BH=AB=3,AH=BH=,
∴AE=2AH=.
故答案为.
4、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.
【解析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.
∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,
∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,
∵MG=PB,AG=AP,∠GAP=60°,
∴△GAP是等边三角形,
∴PA=PG,
∴PA+PB+PC=CP+PG+GM,
∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,
∵AP+BP+CP的最小值为2,∴CM=2,
∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,
作BN⊥AC于N.则BN=AB=1,AN=,CN=2-,
∴BC=.
故答案为.
5、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
E
A D
B C
N
M
F
E
A D
B C
N
M
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为时,求正方形的边长.
【解析】⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.
∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.,即∠BMA=∠NBE.
又∵MB=NB,∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小
理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.
∵∠MBN=60°,MB=NB,∴△BMN是等边三角形,∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=.
解得,x=(舍去负值).
∴正方形的边长为
6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法); ②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
【解析】(1)①如图△DCF即为所求;
②∵四边形ABCD是正方形,∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,
∴AC==AB=4,
∵△ADE绕点D逆时针旋转90°得到△DCF,∴∠DCF=∠DAE=45°,AE=CF,
∴∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4−x,
∴y=(4−x)2+x2=2x2−8x+160(0<x≤4).即y=2(x−2)2+8,
∵2>0,∴x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∴8≤EF2≤16.
(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.
由旋转的性质可知,△AEG是等边三角形,∴AE=EG,
∵DF≤FG+EG+DE,BE=FG,∴AE+BE+DE的最小值为线段DF的长.
在Rt△AFH中,∠FAH=30°,AB==AF,∴FH=AF=,AH==,
Rt△DFH中,DF==,∴BE+AE+ED最小值为
专题 (2)费马点中的对称模型与最值问题
【专题说明】
利用轴对称的性质,把三线段问题通过做对称转化为两点之间线段最短的问题进而解题。
【例题】
1、如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.
【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!
如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,即可得出结果.
2、如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
【分析】依然构造60°旋转,将三条折线段转化为一条直线段.
分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,
易证△AMD≌△AGF,∴MD=GF
∴ME+MA+MD=ME+EG+GF
过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值.
3、如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.
【解析】
如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵点P关于OA的对称点为C,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=3.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.
4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )
A. B. C. D.
【解析】分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,
则点A的坐标为(1,3)、B点坐标为(3,1),
作A点关于y轴的对称点P,B点关于x轴的对称点Q,
所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),
连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,
四边形ABCD周长=DA+DC+CB+AB
=DP+DC+CQ+AB
=PQ+AB
=
=4+2
=6,
故选B.
5、如图所示,,点为内一点,,点分别在上,求周长的最小值.
【解析】如图,作P关于OA、OB的对称点,连结、,交OA、OB于M、N,此时周长最小,根据轴对称性质可知,,,且,,,,为等边三角形,即周长的最小值为8.
6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【解析】(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,
解得:k=,b=.∴直线AE的解析式为y=x+.
(2)设直线CE的解析式为y=mx﹣,
将点E的坐标代入得:4m﹣=,解得:m=.
∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.
设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),
则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面积=×(x2+x)×4=﹣x2+x.
∴当x=2时,△EPC的面积最大.
∴P(2,﹣).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.
∵K是CB的中点,
∴k(,﹣).
∵点H与点K关于CP对称,
∴点H的坐标为(,﹣).
∵点G与点K关于CD对称,
∴点G(0,0).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值为3.
(3)如图3所示:
∵y′经过点D,y′的顶点为点F,
∴点F(3,﹣).
∵点G为CE的中点,
∴G(2,).
∴FG=.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y=对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a+=,解得:a=﹣.
∴点Q1的坐标为(3,﹣).
综上所述,点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).
7、已知,如图,二次函数图象的顶点为,与轴交于、两点(点在点右侧),点、关于直线:对称.
(1)求、两点的坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点B作直线交直线于K点,M、N分别为直线AH和直线上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.
【解析】(1)依题意,得ax2+2ax−3a=0(a≠0),
两边都除以a得x2+2x−3=0,解得x1=−3,x2=1,
∵B点在A点右侧,∴A点坐标为(−3,0),B点坐标为(1,0),
答:A. B两点坐标分别是(−3,0),(1,0).
证明:∵直线l:y=,
当x=−3时,y=,∴点A在直线l上.
(2)∵点H、B关于过A点的直线l:y=对称,∴AH=AB=4,
过顶点H作HC⊥AB交AB于C点,
则AC=,∴顶点H,
代入二次函数解析式,解得a=,
∴二次函数解析式为,
答:二次函数解析式为.
(3)直线AH的解析式为,
直线BK的解析式为,由,解得,即K(3,2),则BK=4,
∵点H、B关于直线AK对称,K(3,2),∴HN+MN的最小值是MB,
过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,
则QM=MK,QE=EK=2,AE⊥QK,
∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,
∵BK∥AH,∴∠BKQ=∠HEQ=90∘,
由勾股定理得QB=
∴HN+NM+MK的最小值为8,
相关资料
更多