人教版新课标A必修3第三章 概率3.1 随机事件的概率3.1.1随机事件的概率教学设计
展开第三章 概率
本章教材分析
在自然界与人类的社会活动中会出现各种各样的现象,既有确定性现象,又有随机现象.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法.概率统计的应用性强,有利于培养学生的应用意识和动手能力.
我们知道,概率是统计学的理论基础,但本书的内容安排是先统计后概率.这样的安排,一方面是考虑到统计与概率学科发展的历史是先有统计,为了研究统计结论的可靠性问题,概率得到了发展;另一方面是考虑到学生的学习心理,统计在前,使得学生在学习过程中可以接触到大量统计案例,学习过程中的实践性可以大大增强.
本章包括随机事件的概率的统计定义,概率的意义及其基本性质;古典概型的特征及概率的计算公式;几何概型的特征及概率的计算公式;利用随机模拟的方法估计随机事件的概率.
本章包括3节,教学约需8课时,课时分配如下(仅供参考):
3.1 | 随机事件的概率 | 约3课时 |
3.2 | 古典概型 | 约2课时 |
3.3 | 几何概型 | 约2课时 |
本章复习 | 约1课时 |
§3.1 随机事件的概率
§3.1.1 随机事件的概率
一、教材分析
概率是描述随机事件发生可能性大小的量度,它已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率.概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣?本节课通过学生亲自动手试验,让学生体会随机事件发生的随机性和随机性中的规律性,通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法,是新课标理念的具体实施.
二、教学目标
1、知识与技能:
(1)了解随机事件、必然事件、不可能事件的概念;
(2)正确理解事件A出现的频率的意义;
(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;
(4)利用概率知识正确理解现实生活中的实际问题.
2、过程与方法:
(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;
(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3、情感态度与价值观:
(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;
(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
三、重点难点
教学重点:
1.理解随机事件发生的不确定性和频率的稳定性.
2.正确理解概率的意义.
教学难点:
1.对概率含义的正确理解.
2.理解频率与概率的关系.
四、课时安排
1课时
五、教学设计
(一)导入新课
思路1
日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.
思路2
1名数学家=10个师
在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.
美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.
在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.
(二)推进新课、新知探究、提出问题
(1)什么是必然事件?请举例说明.
(2)什么是不可能事件?请举例说明.
(3)什么是确定事件?请举例说明.
(4)什么是随机事件?请举例说明.
(5)什么是事件A的频数与频率?什么是事件A的概率?
(6)频率与概率的区别与联系有哪些?
活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念.
具体如下:
第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表中:
姓名 | 试验次数 | 正面朝上总次数 | 正面朝上的比例 |
|
|
|
|
思考
试验结果与其他同学比较,你的结果和他们一致吗?为什么?
第二步 由组长把本小组同学的试验结果统计一下,填入下表.
组次 | 试验总次数 | 正面朝上总次数 | 正面朝上的比例 |
|
|
|
|
思考
与其他小组试验结果比较,正面朝上的比例一致吗?为什么?
通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.
第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?
第四步 把全班实验结果收集起来,也用条形图表示.
思考
这个条形图有什么特点?
引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.
第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.
思考
如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?
引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.
进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系.
讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event),简称必然事件.
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossible event),简称不可能事件.
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件(random event),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数na为事件A出现的频数(frequency);称事件A出现的比例fn(A)=为事件A出现的频率(relative frequency);对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率(probability).
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.
频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.
频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.
概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.
(三)应用示例
思路1
例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于0℃时,冰融化”;
(3)“某人射击一次,中靶”;
(4)“如果a>b,那么a-b>0”;
(5)“掷一枚硬币,出现正面”;
(6)“导体通电后,发热”;
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(8)“某电话机在1分钟内收到2次呼叫”;
(9)“没有水分,种子能发芽”;
(10)“在常温下,焊锡熔化”.
分析:学生针对有关概念,思考讨论,教师及时指点,为后续学习打下基础.根据自然界的规律和日常生活的经验积累,根据定义,可判断事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.
答案:事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.
点评:紧扣各类事件的定义,结合实际来判断.
例2 某射手在同一条件下进行射击,结果如下表所示:
射击次数n | 10 | 20 | 50 | 100 | 200 | 500 |
击中靶心次数m | 8 | 19 | 44 | 92 | 178 | 455 |
击中靶心的频率 |
|
|
|
|
|
|
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
分析:学生回顾所学概念,教师引导学生思考问题的思路,指出事件A出现的频数na与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率.
解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.
(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89.
点评:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之.
变式训练
一个地区从某年起几年之内的新生儿数及其中男婴数如下:
时间范围 | 1年内 | 2年内 | 3年内 | 4年内 |
新生婴儿数 | 5 544 | 9 607 | 13 520 | 17 190 |
男婴数 | 2 883 | 4 970 | 6 994 | 8 892 |
男婴出生的频率 |
|
|
|
|
(1)填写表中男婴出生的频率(结果保留到小数点后第3位);
(2)这一地区男婴出生的概率约是多少?
答案:(1)0.520 0.517 0.517 0.517
(2)由表中的已知数据及公式fn(A)=即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.
思路2
例1 做掷一枚骰子的试验,观察试验结果.
(1)试验可能出现的结果有几种?分别把它们写出;
(2)做60次试验,每种结果出现的频数、频率各是多少?
分析:学生先思考或讨论,教师提示学生注意结果的可能情况,因为每一枚骰子有六个面,每个面上的点数分别是1,2,3,4,5,6,所以应出现六种结果,试验结果可列表求之.
解:(1)试验可能出现的结果有六种,分别是出现1点、2点、3点、4点、5点、6点.
(2)根据实验结果列表后求出频数、频率,表略.
例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
分析:学生先思考或讨论,教师提示学生注意结果的可能情况,中靶的频数为9,试验次数为10,所以中靶的频率为=0.9,所以中靶的概率约为0.9.
解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.
(四)知能训练
1.指出下列事件是必然事件、不可能事件、还是随机事件.
(1)某地1月1日刮西北风;
(2)当x是实数时,x2≥0;
(3)手电简的电池没电,灯泡发亮;
(4)一个电影院某天的上座率超过50%.
答案:(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件.
2.大量重复做掷两枚硬币的实验,汇总实验结果,你会发现什么规律?
解答:随机事件在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件发生的频率会逐渐稳定在区间[0,1]中的某个常数上,从而获取随机事件的概率.
点评:让学生再一次体会了试验、观察、探究、归纳和总结的思想方法.
(五)拓展提升
1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )
A.必然事件 B.随机事件 C.不可能事件 D.无法确定
答案:B
提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件.
2.下列说法正确的是( )
A.任一事件的概率总在(0,1)内 B.不可能事件的概率不一定为0
C.必然事件的概率一定为1 D.以上均不对
答案:C
提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.
3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.
每批粒数 | 2 | 5 | 10 | 70 | 130 | 310 | 700 | 1 500 | 2 000 | 3 000 |
发芽的粒数 | 2 | 4 | 9 | 60 | 116 | 282 | 639 | 1 339 | 1 806 | 2 715 |
发芽的频率 |
|
|
|
|
|
|
|
|
|
|
(1)完成上面表格;
(2)该油菜子发芽的概率约是多少?
解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897.
4.某篮球运动员,在同一条件下进行投篮练习,结果如下表所示.
投篮次数 | 48 | 60 | 75 | 100 | 100 | 50 | 100 |
进球次数m | 36 | 48 | 60 | 83 | 80 | 40 | 76 |
进球频率 |
|
|
|
|
|
|
|
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
解:(1)填入表中的数据依次为0.75,0.8,0.8,0.83,0.8,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80.
(六)课堂小结
本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.
(七)作业
完成课本本节练习.
人教版新课标A必修33.1.1随机事件的概率教案设计: 这是一份人教版新课标A必修33.1.1随机事件的概率教案设计,共2页。教案主要包含了课题,新课教学,课堂练习等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.1随机事件的概率教学设计: 这是一份高中数学人教版新课标A必修33.1.1随机事件的概率教学设计,共3页。教案主要包含了导入新课,新课讲解,课堂练习,课堂小结,课后作业等内容,欢迎下载使用。
人教版新课标A必修33.1.1随机事件的概率教案: 这是一份人教版新课标A必修33.1.1随机事件的概率教案,共3页。