终身会员
搜索
    上传资料 赚现金
    有理数与整式知识点总结
    立即下载
    加入资料篮
    有理数与整式知识点总结01
    有理数与整式知识点总结02
    有理数与整式知识点总结03
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第二章 整式的加减2.1 整式学案

    展开
    这是一份初中数学第二章 整式的加减2.1 整式学案,共6页。学案主要包含了有理数 ⑴按正,数轴,相反数,倒数,比较大小,加减法 2.加法运算律,乘除法 ⑵乘法结合律等内容,欢迎下载使用。

    有理数知识点总结





    正数:大于0的数叫做正数。


    1.概念 负数:在正数前面加上负号“—”的数叫做负数。


    注:0既不是正数也不是负数,是正数和负数的分界线,是整数,


    一、正数和负数 自然数,有理数。


    (不是带“—”号的数都是负数,而是在正数前加“—”的数。)





    2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。





    有理数:整数和分数统称有理数。


    1.概念 整 数:正整数、0、负整数统称为整数。


    分 数:正分数、负分数统称分数。


    (有限小数与无限循环小数都是有理数。)


    注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。





    2.分类:两种


    二、有理数 ⑴按正、负性质分类: ⑵按整数、分数分类:


    正有理数 正整数 正整数


    有理数 正分数 整数 0


    零 有理数 负整数


    负有理数 负整数 分数 正分数


    负分数 负分数


    3.数集内容了解

















    1.概念:规定了原点、正方向、单位长度的直线叫做数轴。


    三要素:原点、正方向、单位长度





    2.对应关系:数轴上的点和有理数是一一对应的。


    三、数轴


    比较大小:在数轴上,右边的数总比左边的数大 。


    3.应用


    求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。


    (注意不带“+”“—”号)

















    代数:只有符号不同的两个数叫做相反数。 (0的相反数是0)


    1.概念 几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。








    2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,


    若a+b=0,则a与b互为相反数。





    四、相反数


    两个符号:符号相同是正数,符号不同是负数。


    3.多重符号的化简


    多个符号:三个或三个以上的符号的化简,看负号的个数,


    当“—”号的个数是偶数个时,结果取正号


    当“—”号的个数是奇数个时,结果取负号








    1.概念:乘积为1的两个数互为倒数。


    (倒数是它本身的数是±1;0没有倒数)


    五、倒数


    2.性质 若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。


    若a与b互为负倒数,则a·b=-1;反之,若a·b= -1则a与b互为负倒数。








    几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。





    一个正数的绝对值是它的本身 (若|a|=|b|,则a=b或a=﹣b)


    2.代数意义 一个负数的绝对值是它的相反数


    0的绝对值是0


    a >0,|a|=a 反之,|a|=a,则a≥0


    六、绝对值 代数意义的符号语言 a = 0, |a|=0 |a|=﹣a,则a≦0


    a<0, |a|=‐a


    注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。





    3.性质:绝对值是a (a>0) 的数有2个,他们互为相反数。即±a。





    4.非负性:任意一个有理数的绝对值都大于等于零,即|a|≥0。几个非负数之和等于0,则每个非负数都等于0。故若|a|+|b|=0,则a=0,b=0








    1.数轴比较法:在数轴上,右边的数总比左边的数大。


    七、比较大小


    2.代数比较法:正数大于零,负数小于零,正数大于一切负数。


    两个负数比较大小时,绝对值大的反而小。

















    1.加法法则 ⑴同号两数相加,取相同的符号,并把绝对值相加。


    ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并


    用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。


    ⑶一个数同0相加,仍得这个数。





    八、加减法 2.加法运算律:两个


    加法交换律:两数相加,交换加数的位置,和不变。即a+b=b+a


    加法结合律:在有理数加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。即a+b+c=(a+b)+c=a+(b+c)





    3.减法法则:减去一个数,等于加上这个数的相反数。


    即a-b=a+(﹣)b














    ⑴两数相乘,同号得正,异号得负,并把绝对值相乘。


    ⑵任何数同0相乘,都得0。


    1.乘法法则 ⑶多个不为0的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即先确定符号,再把绝对值相乘,绝对值的积就是积的绝对值。


    ⑷多个数相乘,若其中有因数0,则积等于0;反之,若积为0,则至少有一个因数是0。





    2.乘法运算律:三个


    ⑴乘法交换律:两数相乘,交换因数的位置,积相等。即a×b=ba。


    九、乘除法 ⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即a×b×c=﹙a×b﹚×c=a×﹙b×c﹚。


    ⑶乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a×﹙b+c﹚=a×b+a×c。





    3.除法法则:三个


    ⑴除以一个(不等于0)的数,等于乘这个数的倒数。


    ⑵两个数相除,同号得正,异号得负,并把绝对值相除。


    ⑶0除以任何一个不等于0的数,都得0。





    4.四则运算法则:先乘除,后加减,有括号先算括号里的。





























    1.概念:求n个相同因数的积得运算,叫做乘方。乘方的结果叫做幂。一个数可以


    看做这个数本身的一次方。


    αn











    2.法则:先确定幂的符号,然后再计算幂的绝对值。


    十、乘方 正数的任何次幂都是正数


    负数的奇次幂是负数,负数的偶次幂是正数


    0的任何正整数次幂都是0





    3.混合运算法则:


    ⑴先乘方,再乘除,最后加减。


    ⑵同级运算,从左到右的顺序进行。


    ⑶如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。在进行有理数的运算时,要分两步走:先确定符号,再求值。











    1.科学记数法概念:把一个大于10的数表示成a×10n的形式(其中a 是整数数位只有一位的数,n为正整数)。这种记数的方法叫做科学记数法。﹙1≤|a|<10﹚


    注:一个n为数用科学记数法表示为a×10n-1


    2.近似数的精确度:两种形式


    ⑴精确到某位或精确到小数点后某位。


    ⑵保留几个有效数字


    十一、科学记数法 注:对于较大的数取近似数时,结果一般用科学记数法来表示。


    例如:256000(精确到万位)的结果是2.6×105





    3.有效数字:从一个数的左边第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。


    注:⑴用科学记数法表示的近似数的有效数字时,只看乘号前面的数字。例如:3.0×104的有效数字是3,0 。


    ⑵带有记数单位的近似数的有效数字,看记数单位前面的数字。


    例如:2.605万的有效数字是2,6,0,5。
































    第二部分:整式


    一、代数式与有理式


    1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。


    2、整式和分式统称为有理式。


    3、含有加、减、乘、除、乘方运算的代数式叫做有理式。


    二、整式和分式


    1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。


    2、有除法运算并且除式中含有字母的有理式叫做分式。


    三、单项式与多项式


    1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)


    2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。


    说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。


    单项式


    1、都是数字与字母的乘积的代数式叫做单项式。


    2、单项式的数字因数叫做单项式的系数。


    3、单项式中所有字母的指数和叫做单项式的次数。


    4、单独一个数或一个字母也是单项式。


    5、只含有字母因式的单项式的系数是1或―1。


    6、单独的一个数字是单项式,它的系数是它本身。


    7、单独的一个非零常数的次数是0。


    8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。


    9、单项式的系数包括它前面的符号。


    10、单项式的系数是带分数时,应化成假分数。


    11、单项式的系数是1或―1时,通常省略数字“1”。


    12、单项式的次数仅与字母有关,与单项式的系数无关。


    多项式


    1、几个单项式的和叫做多项式。


    2、多项式中的每一个单项式叫做多项式的项。


    3、多项式中不含字母的项叫做常数项。


    4、一个多项式有几项,就叫做几项式。


    5、多项式的每一项都包括项前面的符号。


    6、多项式没有系数的概念,但有次数的概念。


    7、多项式中次数最高的项的次数,叫做这个多项式的次数。


    整式


    1、单项式和多项式统称为整式。


    2、单项式或多项式都是整式。


    3、整式不一定是单项式。


    4、整式不一定是多项式。


    5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。


    四、整式的加减


    1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。


    去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。


    同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。


    合并同类项:


    1).合并同类项的概念:


    把多项式中的同类项合并成一项叫做合并同类项。


    2).合并同类项的法则:


    同类项的系数相加,所得结果作为系数,字母和字母的指数不变。


    3).合并同类项步骤:


    a.准确的找出同类项。


    b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。


    c.写出合并后的结果。


    4).在掌握合并同类项时注意:


    a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.


    b.不要漏掉不能合并的项。


    c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。


    说明:合并同类项的关键是正确判断同类项。





    3、几个整式相加减的一般步骤:


    1)列出代数式:用括号把每个整式括起来,再用加减号连接。


    2)按去括号法则去括号。


    3)合并同类项。


    4、代数式求值的一般步骤:


    (1)代数式化简


    (2)代入计算


    (3)对于某些特殊的代数式,可采用“整体代入”进行计算。
    相关学案

    七年级数学上册《有理数》知识点总结: 这是一份七年级数学上册《有理数》知识点总结,共12页。

    圆相关知识点总结 --纯知识点: 这是一份圆相关知识点总结 --纯知识点,共11页。

    中考数学专题几何知识点总结: 这是一份中考数学专题几何知识点总结,共13页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map