初中数学北师大版九年级上册2 用配方法求解一元二次方程教课ppt课件
展开1.会用配方法解二次项系数不为1的一元二次方程;.(重点)2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)
(1) 9x2=1 ;
(2) (x-2)2=2.
2.下列方程能用直接开平方法来解吗?
1.用直接开平方法解下列方程:
(1) x2+6x+9 =5;
(2)x2+6x+4=0.
把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方
问题1:观察下面两个是一元二次方程的联系和区别: ① x2 + 6x + 8 = 0 ; ② 3x2 +8x-3 = 0.
问题2:用配方法来解 x2 + 6x + 8 = 0 .
解:移项,得 x2 + 6x = -8 , 配方,得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4.
想一想怎么来解3x2 +8x-3 = 0.
试一试:解方程: 3x2 + 8x -3 = 0. 解:两边同除以3,得 x2 + x - 1=0. 配方,得 x2 + x + ( ) 2 - ( )2 - 1 = 0, (x + )2 - =0. 移项,得 x + =± , 即 x + = 或 x + = . 所以 x1= , x2 = -3 .
移项和二次项系数化为1这两个步骤能不能交换一下呢?
因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根.
为什么方程两边都加12?
思考1:用配方法解一元二次方程时,移项时要 注意些什么?
思考2:用配方法解一元二次方程的一般步骤.
移项时需注意改变符号.
①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.
①当p>0时,则 ,方程的两个根为②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为 x1=x2=-n.③当p<0时,则方程(x+n)2=p无实数根.
引例:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系:h=15t - 5t2.小球何时能达到10m高?
解:将 h = 10代入方程式中. 15t - 5t2 =10. 两边同时除以-5,得 t2 - 3t = -2, 配方,得 t2 - 3t + ( )2= ( )2 - 2, (t - )2 =
移项,得 (t - )2 =即 t - = ,或 t - = .所以 t1= 2 , t2 = 1 .
即在1s或2s时,小球可达10m高.
例2.试用配方法说明:不论k取何实数,多项式 k2-4k+5 的值必定大于零.
解:k2-4k+5=k2-4k+4+1
因为(k-2)2≥0,所以(k-2)2+1≥1.
所以k2-4k+5的值必定大于零.
例3.若a,b,c为△ABC的三边长,且 试判断△ABC的形状.
解:对原式配方,得
由代数式的性质可知
所以,△ABC为直角三角形.
1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则m的值为( ) A. 1 B.1 C.1或2 D.1或-22.应用配方法求最值.(1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.
解:原式 = 2(x - 1)2 +3 当x =1时有最小值3
解:原式= -3(x - 2)2 - 4 当x =2时有最大值-4
1.求最值或证明代数式的值为恒正(或负)
对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.
2.完全平方式中的配方
如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.
3.利用配方构成非负数和的形式
对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.
例4.读诗词解题: (通过列方程,算出周瑜去世时的年龄.) 大江东去浪淘尽, 千古风流数人物。 而立之年督东吴, 早逝英年两位数。 十位恰小个位三, 个位平方与寿符。 哪位学子算得快, 多少年华属周瑜?
解:设个位数字为x,十位数字为(x-3)
x1=6, x2=5
x2-11x+5.52=-30+5.52
(x-5.5)2=0.25
x-5.5=0.5,或x-5.5=-0.5
x2=10(x-3)+x
∴这个两位数为36或25,
∴周瑜去世的年龄为36岁.
∵周瑜30岁还攻打过东吴,
(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;(3)4x2-6x-3=0; (4) 3x2+6x-9=0.
解:x2+2x+2=0,
解:x2-4x-12=0,
x1=6,x2=-2;
解:x2+2x-3=0,
x1=-3,x2=1.
2.利用配方法证明:不论x取何值,代数式-x2-x-1的值总是负数,并求出它的最大值.
解:-x2-x-1=-(x2+x+ )+ -1
所以-x2-x-1的值必定小于零.
当 时,-x2-x-1有最大值
3.若 ,求(xy)z 的值.
4.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?
解:设道路的宽为xm, 根据题意得
(35-x)(26-x)=850,
x2-61x+60=0.
x1=60(不合题意,舍去), x2=1.
5.已知a,b,c为△ABC的三边长,且 试判断△ABC的形状.
所以,△ABC为等边三角形.
湘教版九年级上册2.2 一元二次方程的解法示范课ppt课件: 这是一份湘教版九年级上册2.2 一元二次方程的解法示范课ppt课件,共27页。PPT课件主要包含了学习目标,配方的方法,配方法的定义,k-22+1,abc等内容,欢迎下载使用。
初中华师大版2.配方法获奖ppt课件: 这是一份初中华师大版2.配方法获奖ppt课件,共14页。PPT课件主要包含了学习目标,典例精析,概括归纳,试一试,课堂小结,课后作业,完成课后相关习题等内容,欢迎下载使用。
初中数学人教版九年级上册21.2.1 配方法教学演示课件ppt: 这是一份初中数学人教版九年级上册21.2.1 配方法教学演示课件ppt,共21页。PPT课件主要包含了回顾与思考,知识回顾,议一议,磨刀不误砍柴工,填一填,它们之间有什么关系,总结归律,课本P9练习1填空,体现了转化的数学思想,配方得等内容,欢迎下载使用。