还剩15页未读,
继续阅读
所属成套资源:2021版高考文科数学北师大版一轮复习精品教案
成套系列资料,整套一键下载
2021版高考文科数学(北师大版)一轮复习教师用书:第四章 第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用
展开
第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用
一、知识梳理
1.y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
2.用五点法画y=Asin(ωx+φ)一个周期内的简图
用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:
x
-
-
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
3.三角函数图象变换的两种方法(ω>0)
常用结论
1.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.
2.函数y=Asin(ωx+φ)的对称轴由ωx+φ=kπ+(k∈Z)确定;对称中心由ωx+φ=kπ(k∈Z)确定其横坐标.
二、教材衍化
1.为了得到函数y=2sin
的图象,可以将函数y=2sin 2x的图象( )
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
答案:A
2.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:
月份x
1
2
3
4
收购价格y(元/斤)
6
7
6
5
选用一个函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为 .
解析:设y=Asin(ωx+φ)+B(A>0,ω>0),由题意得A=1,B=6,T=4,因为T=,所以ω=,所以y=sin+6.因为当x=1时,y=6,所以6=sin+6,结合表中数据得+φ=2kπ,k∈Z,可取φ=-,所以y=sin+6=6-cos x.
答案:y=6-cos x
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)把y=sin x的图象上各点的横坐标缩短为原来的,纵坐标不变,所得图象对应的函数解析式为y=sin x.( )
(2)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( )
(3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( )
(4)如果y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( )
(5)若函数y=Asin(ωx+φ)为偶函数,则φ=2kπ+(k∈Z).( )
答案:(1)× (2)× (3)× (4)√ (5)×
二、易错纠偏
(1)搞不清ω的值对图象变换的影响;
(2)确定不了函数解析式中φ的值.
1.若将函数y=2sin 2x的图象向左平移个单位长度,则得到的图象对应的函数表达式为f(x)= .
解析:函数y=2sin 2x的图象向左平移个单位长度,得到的图象对应的函数表达式为f(x)=2sin =2sin.
答案:2sin
2.(2020·陕西太原市模拟考试)已知函数f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)= .
解析:设f(x)的最小正周期为T,根据题图可知,=,所以T=π,故ω=2,根据2sin=0(增区间上的零点)可知,+φ=2kπ,k∈Z,即φ=2kπ-,k∈Z,又|φ|<,故φ=-.所以f(x)=2sin.
答案:2sin
五点法作图及图象变换(典例迁移)
已知函数f(x)=sin 2x+2cos2x+a,其最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)画出f(x)在[0,π]上的图象.
【解】 (1)f(x)=sin 2x+2cos2x+a
=sin 2x+cos 2x+1+a
=2sin+1+a的最大值为2,
所以a=-1,最小正周期T==π.
(2)由(1)知f(x)=2sin,列表:
x
0
π
2x+
π
2π
f(x)=2sin
1
2
0
-2
0
1
画图如下:
【迁移探究1】 (变结论)在本例条件下,函数y=2cos 2x的图象向右平移 个单位得到y=f(x)的图象.
解析:将函数y=2cos 2x的图象向右平移个单位长度,可得函数y=2sin 2x的图象,再将y=2sin 2x的图象向左平移个单位长度,可得函数y=2sin(2x+)的图象,综上可得,函数y=2sin的图象可以由函数y=2cos 2x的图象向右平移个单位长度得到.
答案:
【迁移探究2】 (变问法)在本例条件下,若将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.
解:由已知得y=g(x)=f(x-m)=2sin[2(x-m)+]=2sin是偶函数,所以2m-=(2k+1),k∈Z,m=+,k∈Z,
又因为m>0,所以m的最小值为.
函数y=Asin(ωx+φ)(A>0,ω>0)
的图象的两种作法
五点法
设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象
图象变
换法
由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”
[注意] 平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是ωx加减多少值.
1.(2020·广州市调研测试)由y=2sin的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,所得图象对应的函数解析式为( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析:选A.由y=2sin的图象向左平移个单位长度,可得y=2sin=2sin
=2sin的图象,再把所得图象上所有点的横坐标伸长到原来的2倍,得到y=2sin的图象,故所得图象对应的函数解析式为y=2sin,选A.
2.(2020·河南模拟改编)已知函数f(x)=sin 2x-cos 2x,将y=f(x)的图象向左平移个单位长度,再向上平移1个单位长度得到函数y=g(x)的图象,则所得函数的最小正周期为 ,g的值为 .
解析:由题知函数f(x)=sin 2x-cos 2x=2sin,
将y=f(x)的图象向左平移个单位长度,
可得y=2sin=2sin 2x的图象,
再向上平移1个单位长度得到函数y=g(x)=2sin 2x+1的图象,
则T==π,g=2sin+1=3.
答案:π 3
由图象确定y=Asin(ωx+φ)的解析式(师生共研)
(2020·蓉城名校第一次联考)若将函数g(x)图象上所有的点向左平移个单位长度得到函数f(x)的图象,已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,则( )
A.g(x)=sin B.g(x)=sin
C.g(x)=sin 2x D.g(x)=sin
【解析】 根据题图有A=1,T=-=⇒T=π=⇒ω=2(T为f(x)的最小正周期),所以f(x)=sin(2x+φ),由f=sin=1⇒sin=1⇒+φ=+2kπ,k∈Z⇒φ=+2kπ,k∈Z.因为|φ|<,所以φ=,所以f(x)=sin,将f(x)=sin的图象向右平移个单位长度得到函数g(x)的图象,则g(x)=f=sin
=sin 2x.故选C.
【答案】 C
确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法
(1)求A,b,确定函数的最大值M和最小值m,
则A=,b=.
(2)求ω,确定函数的最小正周期T,则可得ω=.
(3)求φ,常用的方法有:
①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上);
②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:
“最大值点”(即图象的“峰点”)时ωx+φ =+2kπ(k∈Z);“最小值点”(即图象的“谷点”)时ωx+φ=+2kπ(k∈Z).
1.已知函数f(x)=Asin(ωx+φ)
的最小正周期是π,且当x=时,f(x)取得最大值2,则f(x)= .
解析:因为函数f(x)的最小正周期是π,所以ω=2.又因为x=时,f(x)取得最大值2.
所以A=2,
同时2×+φ=2kπ+,k∈Z,
φ=2kπ+,k∈Z,因为-<φ<,
所以φ=,所以函数y=f(x)的解析式为f(x)=2sin.
答案:2sin
2.(2020·江西上饶模拟)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG(点G是图象的最高点)是边长为2的等边三角形,则f(1)= .
解析:由题意得,A=,T=4=,ω=.又因为f(x)=Acos(ωx+φ)为奇函数,所以φ=+kπ,k∈Z,由0<φ<π,取k=0,则φ=,所以f(x)=cos,所以f(1)=-.
答案:-
三角函数模型的简单应用(师生共研)
(2020·山东省八所重点中学4月联考)如图,点A,B分别是圆心在坐标原点,半径为1和2的圆上的动点.动点A从初始位置A0开始,按逆时针方向以角速度2 rad/s做圆周运动,同时点B从初始位置B0(2,0)开始,按顺时针方向以角速度2 rad/s做圆周运动.记t时刻,点A,B的纵坐标分别为y1,y2.
(1)求t=时,A,B两点间的距离;
(2)若y=y1+y2,求y关于时间t(t>0)的函数关系式,并求当t∈时,y的取值范围.
【解】 (1)连接AB,OA,OB,当t=时,∠xOA=+=,∠xOB=,所以∠AOB=.
又OA=1,OB=2,所以AB2=12+22-2×1×2cos=7,
即A,B两点间的距离为.
(2)依题意,y1=sin,y2=-2sin 2t,
所以y=sin-2sin 2t=cos 2t-sin 2t=cos,
即函数关系式为y=cos(t>0),
当t∈时,2t+∈,所以cos∈,故当t∈时,y∈.
三角函数模型在实际应用中体现的两个方面
(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与因变量之间的对应法则;
(2)需要建立精确的或者数据拟合的模型去解决问题,尤其是利用已知数据建立拟合函数解决实际问题,此类问题体现了数学建模核心素养,考查应用意识.
某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sin t,t∈[0,24),则实验室这一天的最大温差为 ℃.
解析:因为f(t)=10-2
=10-2sin,又0≤t<24,
所以≤t+<,
所以-1≤sin≤1.
当t=2时,sin=1;
当t=14时,sin=-1.
于是f(t)在[0,24)上的最大值为12,最小值为8.
故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.
答案:4
思想方法系列7 数形结合思想在三角函数中的应用
(2020·新疆乌鲁木齐二检)若关于x的方程(sin x+cos x)2+cos 2x=m在区间(0,π]上有两个不同的实数根x1,x2,且|x1-x2|≥,则实数m的取值范围是( )
A.[0,2) B.[0,2]
C.[1,+1] D.[1,+1)
【解析】 关于x的方程(sin x+cos x)2+cos 2x=m可化为sin 2x+cos 2x=m-1,即sin=.
易知sin=在区间(0,π]上有两个不同的实数根x1,x2,且|x1-x2|≥.
令2x+=t,即sin t=在区间上有两个不同的实数根t1,t2.
作出y=sin t的图象,如图所示,由|x1-x2|≥得|t1-t2|≥,
所以-≤<,
故0≤m<2.故选A.
【答案】 A
本题是将方程根的问题转化为函数y=sin与y=的图象的交点,利用数形结合进行求解,可提升学生的直观想象能力.
函数f(x)=3sin x-logx的零点的个数是( )
A.2 B.3
C.4 D.5
解析:选D.函数f(x)零点个数即为y=3sin x与y=logx的交点个数,如图,函数y=3sin x与y=logx有5个交点.
[基础题组练]
1.函数y=sin在区间上的简图是( )
解析:选A.令x=0,得y=sin=-,排除B,D.令x=,得y=sin=0,排除C.
2.函数f(x)=tan ωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f的值是( )
A.- B.
C.1 D.
解析:选D.由题意可知该函数的周期为,所以=,ω=2,f(x)=tan 2x,所以f=tan=.
3.已知函数f(x)=Asin ωx(A>0,ω>0)与g(x)=cos ωx的部分图象如图所示,则( )
A.A=1 B.A=3
C.ω= D.ω=
解析:选C.由题图可得过点(0,1)的图象对应的函数解析式为g(x)=cos ωx,即=1,A=2.过原点的图象对应函数f(x)=Asin ωx.由f(x)的图象可知,T==1.5×4,可得ω=.
4.(2020·江西七校第二次联考)为得到函数y=cos的图象,只需将函数y=sin 2x的图象( )
A.向右平移个单位长度
B.向左平移个单位长度
C.向右平移个单位长度
D.向左平移个单位长度
解析:选B.因为y=sin 2x=cos=cos,
y=cos=cos,所以将函数y=sin 2x的图象向左平移个单位长度可得到函数y=cos的图象.故选B.
5.(2019·高考天津卷)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g=,则f=( )
A.-2 B.-
C. D. 2
解析:选C.因为f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且其最小正周期为π,所以φ=0,ω=2,f(x)=Asin 2x,得g(x)=Asin x.又g=Asin =,所以A=2,故f(x)=2sin 2x,f=2sin =,故选C.
6.将函数y=sin x的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 .
解析:y=sin xy=
siny=sin.
答案:y=sin
7.已知函数f(x)=2sin的部分图象如图所示,则ω= ,函数f(x)的递增区间为 .
解析:由图象知=-=,则周期T=π,即=π,则ω=2,f(x)=2sin(2x+φ).由五点对应法得2×+φ=2kπ,又|φ|<,所以φ=,则f(x)=2sin.令2kπ-≤2x+≤2kπ+,k∈Z,得-+kπ≤x≤kπ+,k∈Z,即函数f(x)的增区间为,k∈Z.
答案:2 (k∈Z)
8.已知f(x)=sin(ω>0),f=f,且f(x)在区间上有最小值,无最大值,则ω= .
解析:依题意,当x==时,f(x)有最小值,
所以sin=-1,所以ω+=2kπ+(k∈Z).
所以ω=8k+(k∈Z),
因为f(x)在区间上有最小值,无最大值,
所以-≤,即ω≤12,
令k=0,得ω=.
答案:
9.如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0),x∈[0,4]的部分图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.求A,ω的值和M,P两点间的距离.
解:连接MP(图略).
依题意,有A=2,=3,
又T=,所以ω=,所以y=2sinx.
当x=4时,y=2sin=3,
所以M(4,3).又P(8,0),
所以|MP|==5.
即M,P两点相距5 km.
10.(2020·合肥市第一次质量检测)将函数f(x)=sin 2x的图象向左平移个单位长度后得到函数g(x)的图象,设函数h(x)=f(x)-g(x).
(1)求函数h(x)的递增区间;
(2)若g=,求h(α)的值.
解:(1)由已知可得g(x)=sin,
则h(x)=sin 2x-sin=sin.
令-+2kπ≤2x-≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z.
所以函数h(x)的增区间为,k∈Z.
(2)由g=得sin=
sin=,
所以sin=-,即h(α)=-.
[综合题组练]
1.(2020·陕西延安模拟考试)已知P(1,2)是函数f(x)=Asin(ωx+φ)(A>0,ω>0)图象的一个最高点,B,C是与P相邻的两个最低点.设∠BPC=θ,若tan=,则f(x)图象的对称中心可以是( )
A.(0,0) B.(1,0)
C. D.
解析:选D.如图,连接BC,设BC的中点为D,E,F为与点P最近的函数f(x)的图象与x轴的交点,即函数f(x)图象的两个对称中心,连接PD,则由题意知|PD|=4,∠BPD=∠CPD=,PD⊥BC,所以tan∠BPD=tan===,所以|BD|=3.由函数f(x)图象的对称性知xE=1-=-,xF=1+=,所以E,F,所以函数f(x)图象的对称中心可以是,故选D.
2.(2020·沈阳市质量监测(一))设函数f(x)=sin,
则下列结论正确的是 .(写出所有正确结论的序号)
①函数y=f(x)的减区间为(k∈Z);
②函数y=f(x)的图象可由y=sin 2x的图象向左平移个单位长度得到;
③函数y=f(x)的图象的一条对称轴方程为x=;
④若x∈,则f(x)的取值范围是.
解析:对于①,令2kπ+≤2x-≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,①正确;对于②,y=sin 2x的图象向左平移个单位长度后是y=sin=sin的图象,②错误;对于③,令2x-=kπ+,k∈Z,得x=π+,k∈Z,当k=-1时,x=-,当k=0时,x=,③错误;对于④,若x∈,则2x-∈,故f(x)∈,④正确.
答案:①④
3.设函数f(x)=sin+sin,其中0<ω<3.已知f=0.
(1)求ω;
(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.
解:(1)因为f(x)=sin+sin,
所以f(x)=sin ωx-cos ωx-cos ωx
=sin ωx-cos ωx
=
=sin.
由题设知f=0,所以-=kπ,k∈Z.
故ω=6k+2,k∈Z,又0<ω<3,
所以ω=2.
(2)由(1)得f(x)=sin,
所以g(x)=sin=sin.
因为x∈,所以x-∈,
当x-=-,
即x=-时,g(x)取得最小值-.
4.已知函数f(x)=sin(ωx+φ)的图象关于直线x=对称,且图象上相邻最高点的距离为π.
(1)求f的值;
(2)将函数y=f(x)的图象向右平移个单位后,得到y=g(x)的图象,求g(x)的递减区间.
解:(1)因为f(x)的图象上相邻最高点的距离为π,
所以f(x)的最小正周期T=π,从而ω==2.
又f(x)的图象关于直线x=对称,
所以2×+φ=kπ+(k∈Z),
因为-≤φ<,所以k=0,
所以φ=-=-,所以f(x)=sin,
则f=sin=sin=.
(2)将f(x)的图象向右平移个单位后,得到f
的图象,
所以g(x)=f=sin
=sin.
当2kπ+≤2x-≤2kπ+(k∈Z),
即kπ+≤x≤kπ+(k∈Z)时,g(x)是减少的.
因此g(x)的减区间为(k∈Z).
一、知识梳理
1.y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
2.用五点法画y=Asin(ωx+φ)一个周期内的简图
用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:
x
-
-
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
3.三角函数图象变换的两种方法(ω>0)
常用结论
1.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.
2.函数y=Asin(ωx+φ)的对称轴由ωx+φ=kπ+(k∈Z)确定;对称中心由ωx+φ=kπ(k∈Z)确定其横坐标.
二、教材衍化
1.为了得到函数y=2sin
的图象,可以将函数y=2sin 2x的图象( )
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
答案:A
2.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:
月份x
1
2
3
4
收购价格y(元/斤)
6
7
6
5
选用一个函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为 .
解析:设y=Asin(ωx+φ)+B(A>0,ω>0),由题意得A=1,B=6,T=4,因为T=,所以ω=,所以y=sin+6.因为当x=1时,y=6,所以6=sin+6,结合表中数据得+φ=2kπ,k∈Z,可取φ=-,所以y=sin+6=6-cos x.
答案:y=6-cos x
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)把y=sin x的图象上各点的横坐标缩短为原来的,纵坐标不变,所得图象对应的函数解析式为y=sin x.( )
(2)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( )
(3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( )
(4)如果y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( )
(5)若函数y=Asin(ωx+φ)为偶函数,则φ=2kπ+(k∈Z).( )
答案:(1)× (2)× (3)× (4)√ (5)×
二、易错纠偏
(1)搞不清ω的值对图象变换的影响;
(2)确定不了函数解析式中φ的值.
1.若将函数y=2sin 2x的图象向左平移个单位长度,则得到的图象对应的函数表达式为f(x)= .
解析:函数y=2sin 2x的图象向左平移个单位长度,得到的图象对应的函数表达式为f(x)=2sin =2sin.
答案:2sin
2.(2020·陕西太原市模拟考试)已知函数f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)= .
解析:设f(x)的最小正周期为T,根据题图可知,=,所以T=π,故ω=2,根据2sin=0(增区间上的零点)可知,+φ=2kπ,k∈Z,即φ=2kπ-,k∈Z,又|φ|<,故φ=-.所以f(x)=2sin.
答案:2sin
五点法作图及图象变换(典例迁移)
已知函数f(x)=sin 2x+2cos2x+a,其最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)画出f(x)在[0,π]上的图象.
【解】 (1)f(x)=sin 2x+2cos2x+a
=sin 2x+cos 2x+1+a
=2sin+1+a的最大值为2,
所以a=-1,最小正周期T==π.
(2)由(1)知f(x)=2sin,列表:
x
0
π
2x+
π
2π
f(x)=2sin
1
2
0
-2
0
1
画图如下:
【迁移探究1】 (变结论)在本例条件下,函数y=2cos 2x的图象向右平移 个单位得到y=f(x)的图象.
解析:将函数y=2cos 2x的图象向右平移个单位长度,可得函数y=2sin 2x的图象,再将y=2sin 2x的图象向左平移个单位长度,可得函数y=2sin(2x+)的图象,综上可得,函数y=2sin的图象可以由函数y=2cos 2x的图象向右平移个单位长度得到.
答案:
【迁移探究2】 (变问法)在本例条件下,若将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.
解:由已知得y=g(x)=f(x-m)=2sin[2(x-m)+]=2sin是偶函数,所以2m-=(2k+1),k∈Z,m=+,k∈Z,
又因为m>0,所以m的最小值为.
函数y=Asin(ωx+φ)(A>0,ω>0)
的图象的两种作法
五点法
设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象
图象变
换法
由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”
[注意] 平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是ωx加减多少值.
1.(2020·广州市调研测试)由y=2sin的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,所得图象对应的函数解析式为( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析:选A.由y=2sin的图象向左平移个单位长度,可得y=2sin=2sin
=2sin的图象,再把所得图象上所有点的横坐标伸长到原来的2倍,得到y=2sin的图象,故所得图象对应的函数解析式为y=2sin,选A.
2.(2020·河南模拟改编)已知函数f(x)=sin 2x-cos 2x,将y=f(x)的图象向左平移个单位长度,再向上平移1个单位长度得到函数y=g(x)的图象,则所得函数的最小正周期为 ,g的值为 .
解析:由题知函数f(x)=sin 2x-cos 2x=2sin,
将y=f(x)的图象向左平移个单位长度,
可得y=2sin=2sin 2x的图象,
再向上平移1个单位长度得到函数y=g(x)=2sin 2x+1的图象,
则T==π,g=2sin+1=3.
答案:π 3
由图象确定y=Asin(ωx+φ)的解析式(师生共研)
(2020·蓉城名校第一次联考)若将函数g(x)图象上所有的点向左平移个单位长度得到函数f(x)的图象,已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,则( )
A.g(x)=sin B.g(x)=sin
C.g(x)=sin 2x D.g(x)=sin
【解析】 根据题图有A=1,T=-=⇒T=π=⇒ω=2(T为f(x)的最小正周期),所以f(x)=sin(2x+φ),由f=sin=1⇒sin=1⇒+φ=+2kπ,k∈Z⇒φ=+2kπ,k∈Z.因为|φ|<,所以φ=,所以f(x)=sin,将f(x)=sin的图象向右平移个单位长度得到函数g(x)的图象,则g(x)=f=sin
=sin 2x.故选C.
【答案】 C
确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法
(1)求A,b,确定函数的最大值M和最小值m,
则A=,b=.
(2)求ω,确定函数的最小正周期T,则可得ω=.
(3)求φ,常用的方法有:
①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上);
②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:
“最大值点”(即图象的“峰点”)时ωx+φ =+2kπ(k∈Z);“最小值点”(即图象的“谷点”)时ωx+φ=+2kπ(k∈Z).
1.已知函数f(x)=Asin(ωx+φ)
的最小正周期是π,且当x=时,f(x)取得最大值2,则f(x)= .
解析:因为函数f(x)的最小正周期是π,所以ω=2.又因为x=时,f(x)取得最大值2.
所以A=2,
同时2×+φ=2kπ+,k∈Z,
φ=2kπ+,k∈Z,因为-<φ<,
所以φ=,所以函数y=f(x)的解析式为f(x)=2sin.
答案:2sin
2.(2020·江西上饶模拟)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG(点G是图象的最高点)是边长为2的等边三角形,则f(1)= .
解析:由题意得,A=,T=4=,ω=.又因为f(x)=Acos(ωx+φ)为奇函数,所以φ=+kπ,k∈Z,由0<φ<π,取k=0,则φ=,所以f(x)=cos,所以f(1)=-.
答案:-
三角函数模型的简单应用(师生共研)
(2020·山东省八所重点中学4月联考)如图,点A,B分别是圆心在坐标原点,半径为1和2的圆上的动点.动点A从初始位置A0开始,按逆时针方向以角速度2 rad/s做圆周运动,同时点B从初始位置B0(2,0)开始,按顺时针方向以角速度2 rad/s做圆周运动.记t时刻,点A,B的纵坐标分别为y1,y2.
(1)求t=时,A,B两点间的距离;
(2)若y=y1+y2,求y关于时间t(t>0)的函数关系式,并求当t∈时,y的取值范围.
【解】 (1)连接AB,OA,OB,当t=时,∠xOA=+=,∠xOB=,所以∠AOB=.
又OA=1,OB=2,所以AB2=12+22-2×1×2cos=7,
即A,B两点间的距离为.
(2)依题意,y1=sin,y2=-2sin 2t,
所以y=sin-2sin 2t=cos 2t-sin 2t=cos,
即函数关系式为y=cos(t>0),
当t∈时,2t+∈,所以cos∈,故当t∈时,y∈.
三角函数模型在实际应用中体现的两个方面
(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与因变量之间的对应法则;
(2)需要建立精确的或者数据拟合的模型去解决问题,尤其是利用已知数据建立拟合函数解决实际问题,此类问题体现了数学建模核心素养,考查应用意识.
某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sin t,t∈[0,24),则实验室这一天的最大温差为 ℃.
解析:因为f(t)=10-2
=10-2sin,又0≤t<24,
所以≤t+<,
所以-1≤sin≤1.
当t=2时,sin=1;
当t=14时,sin=-1.
于是f(t)在[0,24)上的最大值为12,最小值为8.
故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.
答案:4
思想方法系列7 数形结合思想在三角函数中的应用
(2020·新疆乌鲁木齐二检)若关于x的方程(sin x+cos x)2+cos 2x=m在区间(0,π]上有两个不同的实数根x1,x2,且|x1-x2|≥,则实数m的取值范围是( )
A.[0,2) B.[0,2]
C.[1,+1] D.[1,+1)
【解析】 关于x的方程(sin x+cos x)2+cos 2x=m可化为sin 2x+cos 2x=m-1,即sin=.
易知sin=在区间(0,π]上有两个不同的实数根x1,x2,且|x1-x2|≥.
令2x+=t,即sin t=在区间上有两个不同的实数根t1,t2.
作出y=sin t的图象,如图所示,由|x1-x2|≥得|t1-t2|≥,
所以-≤<,
故0≤m<2.故选A.
【答案】 A
本题是将方程根的问题转化为函数y=sin与y=的图象的交点,利用数形结合进行求解,可提升学生的直观想象能力.
函数f(x)=3sin x-logx的零点的个数是( )
A.2 B.3
C.4 D.5
解析:选D.函数f(x)零点个数即为y=3sin x与y=logx的交点个数,如图,函数y=3sin x与y=logx有5个交点.
[基础题组练]
1.函数y=sin在区间上的简图是( )
解析:选A.令x=0,得y=sin=-,排除B,D.令x=,得y=sin=0,排除C.
2.函数f(x)=tan ωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f的值是( )
A.- B.
C.1 D.
解析:选D.由题意可知该函数的周期为,所以=,ω=2,f(x)=tan 2x,所以f=tan=.
3.已知函数f(x)=Asin ωx(A>0,ω>0)与g(x)=cos ωx的部分图象如图所示,则( )
A.A=1 B.A=3
C.ω= D.ω=
解析:选C.由题图可得过点(0,1)的图象对应的函数解析式为g(x)=cos ωx,即=1,A=2.过原点的图象对应函数f(x)=Asin ωx.由f(x)的图象可知,T==1.5×4,可得ω=.
4.(2020·江西七校第二次联考)为得到函数y=cos的图象,只需将函数y=sin 2x的图象( )
A.向右平移个单位长度
B.向左平移个单位长度
C.向右平移个单位长度
D.向左平移个单位长度
解析:选B.因为y=sin 2x=cos=cos,
y=cos=cos,所以将函数y=sin 2x的图象向左平移个单位长度可得到函数y=cos的图象.故选B.
5.(2019·高考天津卷)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g=,则f=( )
A.-2 B.-
C. D. 2
解析:选C.因为f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且其最小正周期为π,所以φ=0,ω=2,f(x)=Asin 2x,得g(x)=Asin x.又g=Asin =,所以A=2,故f(x)=2sin 2x,f=2sin =,故选C.
6.将函数y=sin x的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 .
解析:y=sin xy=
siny=sin.
答案:y=sin
7.已知函数f(x)=2sin的部分图象如图所示,则ω= ,函数f(x)的递增区间为 .
解析:由图象知=-=,则周期T=π,即=π,则ω=2,f(x)=2sin(2x+φ).由五点对应法得2×+φ=2kπ,又|φ|<,所以φ=,则f(x)=2sin.令2kπ-≤2x+≤2kπ+,k∈Z,得-+kπ≤x≤kπ+,k∈Z,即函数f(x)的增区间为,k∈Z.
答案:2 (k∈Z)
8.已知f(x)=sin(ω>0),f=f,且f(x)在区间上有最小值,无最大值,则ω= .
解析:依题意,当x==时,f(x)有最小值,
所以sin=-1,所以ω+=2kπ+(k∈Z).
所以ω=8k+(k∈Z),
因为f(x)在区间上有最小值,无最大值,
所以-≤,即ω≤12,
令k=0,得ω=.
答案:
9.如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0),x∈[0,4]的部分图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.求A,ω的值和M,P两点间的距离.
解:连接MP(图略).
依题意,有A=2,=3,
又T=,所以ω=,所以y=2sinx.
当x=4时,y=2sin=3,
所以M(4,3).又P(8,0),
所以|MP|==5.
即M,P两点相距5 km.
10.(2020·合肥市第一次质量检测)将函数f(x)=sin 2x的图象向左平移个单位长度后得到函数g(x)的图象,设函数h(x)=f(x)-g(x).
(1)求函数h(x)的递增区间;
(2)若g=,求h(α)的值.
解:(1)由已知可得g(x)=sin,
则h(x)=sin 2x-sin=sin.
令-+2kπ≤2x-≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z.
所以函数h(x)的增区间为,k∈Z.
(2)由g=得sin=
sin=,
所以sin=-,即h(α)=-.
[综合题组练]
1.(2020·陕西延安模拟考试)已知P(1,2)是函数f(x)=Asin(ωx+φ)(A>0,ω>0)图象的一个最高点,B,C是与P相邻的两个最低点.设∠BPC=θ,若tan=,则f(x)图象的对称中心可以是( )
A.(0,0) B.(1,0)
C. D.
解析:选D.如图,连接BC,设BC的中点为D,E,F为与点P最近的函数f(x)的图象与x轴的交点,即函数f(x)图象的两个对称中心,连接PD,则由题意知|PD|=4,∠BPD=∠CPD=,PD⊥BC,所以tan∠BPD=tan===,所以|BD|=3.由函数f(x)图象的对称性知xE=1-=-,xF=1+=,所以E,F,所以函数f(x)图象的对称中心可以是,故选D.
2.(2020·沈阳市质量监测(一))设函数f(x)=sin,
则下列结论正确的是 .(写出所有正确结论的序号)
①函数y=f(x)的减区间为(k∈Z);
②函数y=f(x)的图象可由y=sin 2x的图象向左平移个单位长度得到;
③函数y=f(x)的图象的一条对称轴方程为x=;
④若x∈,则f(x)的取值范围是.
解析:对于①,令2kπ+≤2x-≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,①正确;对于②,y=sin 2x的图象向左平移个单位长度后是y=sin=sin的图象,②错误;对于③,令2x-=kπ+,k∈Z,得x=π+,k∈Z,当k=-1时,x=-,当k=0时,x=,③错误;对于④,若x∈,则2x-∈,故f(x)∈,④正确.
答案:①④
3.设函数f(x)=sin+sin,其中0<ω<3.已知f=0.
(1)求ω;
(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.
解:(1)因为f(x)=sin+sin,
所以f(x)=sin ωx-cos ωx-cos ωx
=sin ωx-cos ωx
=
=sin.
由题设知f=0,所以-=kπ,k∈Z.
故ω=6k+2,k∈Z,又0<ω<3,
所以ω=2.
(2)由(1)得f(x)=sin,
所以g(x)=sin=sin.
因为x∈,所以x-∈,
当x-=-,
即x=-时,g(x)取得最小值-.
4.已知函数f(x)=sin(ωx+φ)的图象关于直线x=对称,且图象上相邻最高点的距离为π.
(1)求f的值;
(2)将函数y=f(x)的图象向右平移个单位后,得到y=g(x)的图象,求g(x)的递减区间.
解:(1)因为f(x)的图象上相邻最高点的距离为π,
所以f(x)的最小正周期T=π,从而ω==2.
又f(x)的图象关于直线x=对称,
所以2×+φ=kπ+(k∈Z),
因为-≤φ<,所以k=0,
所以φ=-=-,所以f(x)=sin,
则f=sin=sin=.
(2)将f(x)的图象向右平移个单位后,得到f
的图象,
所以g(x)=f=sin
=sin.
当2kπ+≤2x-≤2kπ+(k∈Z),
即kπ+≤x≤kπ+(k∈Z)时,g(x)是减少的.
因此g(x)的减区间为(k∈Z).
相关资料
更多