|教案下载
终身会员
搜索
    上传资料 赚现金
    2020版新设计一轮复习数学(理)通用版讲义:第二章第八节函数与方程
    立即下载
    加入资料篮
    2020版新设计一轮复习数学(理)通用版讲义:第二章第八节函数与方程01
    2020版新设计一轮复习数学(理)通用版讲义:第二章第八节函数与方程02
    2020版新设计一轮复习数学(理)通用版讲义:第二章第八节函数与方程03
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版新设计一轮复习数学(理)通用版讲义:第二章第八节函数与方程

    展开

    第八节函数与方程

    1函数零点的概念

    对于函数yf(x)xD,我们把使f(x)0的实数x叫做函数yf(x)xD零点.

    2函数的零点与方程根的联系

    函数yf(x)的零点就是方程f(x)0的实数根也就是函数yf(x)的图象与x轴的横坐标,所以方程f(x)0有实根函数yf(x)的图象与x轴有交点函数f(x)有零点.

    3零点存在性定理

    4二次函数图象与零点的关系

    Δb24ac

    Δ0

    Δ0

    Δ0

    二次函数yax2bxc(a0)的图象

    x轴的交点

    (x1,0)(x2,0)

    (x1,0)

    零点个数

    2

    1

    0

    (1)函数的零点是实数,而不是点,是方程f(x)0的实根.

    (2)零点一定在定义域内.

    由函数yf(x)在闭区间[ab]上有零点不一定能推出f(af(b)0,如下图所示.所以f(af(b)0yf(x)在闭区间[ab]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶次零点)时,函数值才变号,即相邻两个零点之间的函数值同号.

     

    零点存在性定理只能判断零点存在,不能确定零点的个数.若函数在某区间上是单调函数,则该函数在该区间上至多有一个零点.

    判断二次函数f(x)的零点个数就是判断一元二次方程ax2bxc0的实根个数,一般由判别式Δ0Δ0Δ0完成.

    [熟记常用结论]

    1.若函数f(x)[ab]上单调,且f(x)的图象是连续不断的一条曲线,则f(af(b)0函数f(x)[ab]上只有一个零点.

    2.连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.

    3.周期函数如果存在零点,则必有无穷个零点.

    [小题查验基础]

    一、判断题(对的打,错的打“×”)

    (1)函数的零点就是函数的图象与x轴的交点.(  )

    (2)函数yf(x)在区间(ab)内有零点(函数图象连续不断),则f(a)f(b)0.(  )

    (3)二次函数yax2bxc(a0)b24ac0时没有零点.(  )

    答案:(1)× (2)× (3)

    二、选填题

    1.已知函数yf(x)的图象是连续曲线,且有如下的对应值表:

    x

    1

    2

    3

    4

    5

    6

    y

    124.4

    35

    74

    14.5

    56.7

    123.6

    则函数yf(x)在区间[1,6]上的零点至少有(  )

    A2个         B3

    C4 D5

    解析:B 由零点存在性定理及题中的对应值表可知,函数f(x)在区间(2,3)(3,4)(4,5)内均有零点,所以yf(x)[1,6]上至少有3个零点.故选B.

    2.函数f(x)ln x的零点所在的大致范围是(  )

    A(1,2)  B(2,3)

    C.(3,4)  D(4,+)

    解析:B 易知f(x)为增函数,由f(2)ln 210f(3)ln 30,得f(2)·f(3)0.故选B.

    3.函数f(x)ex3x的零点个数为(  )

    A0  B1

    C2  D3

    解析:B 函数f(x)ex3xR上是增函数,

    f(1)30f(0)10

    f(1)·f(0)0

    函数f(x)有唯一零点,且在(1,0)内,故选B.

    4.函数f(x)(x22)(x23x2)的零点为________

    答案:1,2

    考点一函数零点所在区间的判断[基础自学过关]

    [题组练透]

    1(2019·郑州名校联考)已知实数ab满足2a3,3b2,则函数f(x)axxb的零点所在的区间是(  )

    A(2,-1)       B(1,0)

    C(0,1)  D(1,2)

    解析:B 2a3,3b2a1,0b1,又f(x)axxb是单调递增函数,f(1)1b0f(0)1b0f(x)在区间(1,0)上存在零点.故选B.

    2.若x0是方程xx的解,则x0属于区间(  )

    A.  B.

    C.  D.

    解析:C 令g(x)xf(x)x

    g(0)1f(0)0gfgf

    结合图象可得x0.

    3(2019·河北武邑中学调研)函数f(x)3x7ln x的零点位于区间(nn1)(nN)内,则n________.

    解析:因为f(x)(0,+)上单调递增,且f(2)=-1ln 20f(3)2ln 30,所以函数f(x)的零点位于区间(2,3)内,故n2.

    答案:2

    [名师微点]

    确定函数f(x)的零点所在区间的常用方法

     (1)利用函数零点的存在性定理:首先看函数yf(x)在区间[ab]上的图象是否连续,再看是否有f(af(b)0.若有,则函数yf(x)在区间(ab)内必有零点.

    (2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.

    考点二判断函数零点个数[师生共研过关]

    [典例精析]

    已知函数f(x)函数g(x)3f(2x),则函数yf(x)g(x)的零点个数为(  )

    A2  B3

    C4  D5

    [解析] 由已知条件可得g(x)3f(2x)函数yf(x)g(x)的零点

    个数即为函数yf(x)yg(x)图象的交点个数,在平面直角坐标系内作出函数yf(x)yg(x)的图象如图所示.

    由图可知函数yf(x)yg(x)的图象有2个交点,所以函数yf(x)g(x)的零点个数为2,选A.

    [答案] A

    [解题技法]

    函数零点个数的判断方法

    (1)直接求零点,令f(x)0,有几个解就有几个零点;

    (2)零点存在性定理,要求函数f(x)在区间[ab]上是连续不断的曲线,且f(af(b)0,再结合函数的图象与性质确定函数零点个数;

    (3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.

    [过关训练]

    1(2019·郑州质检)已知函数f(x)xcos x,则f(x)[0,2π]上的零点个数为________

    解析:如图,作出g(x)xh(x)cos x的图象,可知其在[0,2π]上的交点个数为3,所以函数f(x)[0,2π]上的零点个数为3.

    答案:3

    2.函数f(x)的零点个数是________

    解析:x0时,令f(x)0,即x22x0,解得x=-2x0(舍去),所以当x0时,只有一个零点;当x0时,f(x)exx2,而f(x)ex1,显然f(x)0,所以f(x)[0,+)上单调递增,又f(0)e002=-10f(2)e240,所以当x0时,函数f(x)有且只有一个零点.综上,函数f(x)只有2个零点.

    答案:2

    3(2018·全国卷)函数f(x)cos[0π]的零点个数为________

    解析:由题意可知,当3xkπ(kZ)时,f(x)0.x[0π]3x

    3x取值为时,f(x)0

    即函数f(x)cos[0π]的零点个数为3.

    答案:3

    考点三函数零点的应用[全析考法过关]

    [考法全析]

    考法() 根据函数零点个数或存在情况求参数范围

    [1] (1)(2019·郑州模拟)已知函数f(x)(aR),若函数f(x)R上有两个零点,则实数a的取值范围是(  )

    A(0,1]       B[1,+)

    C(0,1)  D(1]

    (2)(2018·全国卷)已知函数f(x)g(x)f(x)xa.g(x)存在2个零点,则a的取值范围是(  )

    A[1,0)  B[0,+)

    C[1,+)  D[1,+)

    [解析] (1)画出函数f(x)的大致图象如图所示.因为函数f(x)R上有两个零点,所以f(x)(0](0,+)上各有一个零点.当x0时,f(x)有一个零点,需0a1;当x0时,f(x)有一个零点,需-a0,即a0.综上,0a1,故选A.

    (2)h(x)=-xa,则g(x)f(x)h(x).在同一坐标系中画出yf(x)yh(x)的示意图,如图所示.若g(x)存在2个零点,则yf(x)的图象与yh(x)的图象有2个交点,平移yh(x)的图象,可知当直线y=-xa过点(0,1)时,有2个交点,此时1=-0aa=-1.y=-xay=-x1上方,即a<-1时,仅有1个交点,不符合题意.当y=-xay=-x1下方,即a>-1时,有2个交点,符合题意.综上,a的取值范围为[1,+).故选C.

    [答案] (1)A (2)C

    考法() 根据函数零点的范围求参数范围

    [2] 若函数f(x)(m2)x2mx(2m1)的两个零点分别在区间(1,0)和区间(1,2)内,则m的取值范围是____________

    [解析] 依题意,结合函数f(x)的图象分析可知m需满足

    解得m.

    [答案] 

    考法() 求函数多个零点(方程根)的和

    [3] (2019·石家庄质量检测)已知M是函数f(x)|2x3|8sin πx(xR)的所有零点之和,则M的值为________

    [解析] 将函数f(x)|2x3|8sin πx的零点转化为函数h(x)|2x3|g(x)8sin πx图象交点的横坐标.在同一平面直角坐标系中,画出函数h(x)g(x)的图象,如图,因为函数h(x)g(x)的图象都关于直线x对称,两个函数的图象共有8个交点,所以函数f(x)的所有零点之和M8×12.

    [答案] 12

    [规律探求]

    看个性

    考法()是根据函数零点的个数及零点存在情况求参数范围,解决此类问题通常先对解析式变形,然后在同一坐标系内画出函数的图象,数形结合求解.

    考法()是根据函数零点所在区间求参数,解决此类问题应先判断函数的单调性,再利用零点存在性定理,建立参数所满足的不等式,解不等式,即得参数的取值范围.

    考法()是求函数零点的和,求函数的多个零点(或方程的根以及直线ym与函数图象的多个交点横坐标)的和时,应考虑函数的性质,尤其是对称性特征(这里的对称性主要包括函数本身关于点的对称,直线的对称等)

    找共性

    根据函数零点求参数范围的一般步骤为:

    (1)转化:把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况.

    (2)列式:根据零点存在性定理或结合函数图象列式.

    (3)结论:求出参数的取值范围或根据图象得出参数的取值范围.

     

    [过关训练]

    1.函数f(x)x2ax1在区间上有零点,则实数a的取值范围是(  )

    A(2,+)       B[2,+)

    C.  D.

    解析:D 由题意知方程axx21上有解,即ax上有解,设txx,则t的取值范围是实数a的取值范围是.

    2.设函数f(x)g(x)f(x)4mxm,其中m0.若函数g(x)在区间(1,1)上有且仅有一个零点,则实数m的取值范围是(  )

    A{1}  B.

    C{1}  D.

    解析:C 作出函数yf(x)的大致图象,如图所示.函数g(x)的零点个数函数yf(x)的图象与直线y4mxm的交点个数.直线y4mxm过点,当直线y4mxm过点(1,1)时,m;当直线y4mxm与曲线y1(1x0)相切时,设切点为,由y=-得切线的斜率为-,则-,解得x0=-,所以4m=-=-4,得m=-1.结合图象可知当mm=-1时,函数g(x)在区间(1,1)上有且仅有一个零点.

                                                                  

    一、题点全面练

    1.设f(x)是区间[1,1]上的增函数,且f ·f 0,则方程f(x)0在区间[1,1](  )

    A.可能有3个实数根    B.可能有2个实数根

    C.有唯一的实数根  D.没有实数根

    解析:C f(x)在区间[1,1]上是增函数,且f ·f 0

    f(x)在区间上有唯一的零点.

    方程f(x)0在区间[1,1]内有唯一的实数根.

    2(2018·濮阳一模)函数f(x)ln(2x)1的零点位于区间(  )

    A(2,3)  B(3,4)

    C(0,1)  D(1,2)

    解析:D f(x)ln(2x)1是增函数,且是连续函数,

    f(1)ln 210f(2)ln 410

    根据函数零点的存在性定理可得,函数f(x)的零点位于区间(1,2)上.

    3(2019·南宁模拟)设函数f(x)ln x2x6,则f(x)零点的个数为(  )

    A3  B2

    C1  D0

    解析:B 令f(x)0ln x2x6g(x)ln x(x0)h(x)2x6(x0)在同一平面直角坐标系中画出这两个函数的图象,如图所示,两个函数图象的交点个数就等于函数f(x)零点的个数,容易看出函数f(x)零点的个数为2,故选B.

    4.已知函数f(x)xlog3x,若x0是函数yf(x)的零点,且0x1x0,则f(x1)的值(  )

    A.恒为正值  B.等于0

    C.恒为负值  D.不大于0

    解析:A 因为函数f(x)xlog3x(0,+)上是减函数,所以当0x1x0时,有f(x1)f(x0).又x0是函数f(x)的零点,因此f(x0)0,所以f(x1)0,即f(x1)的值恒为正值,故选A.

    5(2018·黄山一模)已知函数f(x)e|x||x|.若关于x的方程f(x)k有两个不同的实根,则实数k的取值范围是(  )

    A(0,1)  B(1,+)

    C(1,0)  D(,-1)

    解析:B 方程f(x)k化为方程e|x|k|x|.ye|x|yk|x|yk|x|表示过点(0k),斜率为1或-1的平行折线系,折线与曲线ye|x|恰好有一个公共点时,有k1,如图.若关于x的方程f(x)k有两个不同的实根,则实数k的取值范围是(1,+)

    6.若方程ln xx40在区间(ab)(abZ,且ba1)上有一根,则a的值为(  )

    A1  B2

    C3  D4

    解析:B 方程ln xx40的根为函数f(x)ln xx4的零点.f(x)的定义域为(0,+)f(x)在定义域上单调递增.因为f(2)ln 220f(3)ln 310,所以f(x)在区间(2,3)有一个零点,则方程ln xx40在区间(2,3)有一根,所以a2b3.故选B.

    7(2019·哈尔滨检测)若函数f(x)x2axb的两个零点是-12,则不等式af(2x)0的解集是________

    解析:函数f(x)x2axb的两个零点是-12,即-1,2是方程x2axb0的两根,可得-12=-a,-1×2b,解得a=-1b=-2.f(x)x2x2af(2x)0,即4x22x20,解得-1x.

    答案:

    8.已知函数f(x)g(x)则函数f(g(x))的所有零点之和是________

    解析:f(x)0,得x2x=-2,由g(x)2,得x1,由g(x)=-2,得x=-,所以函数f(g(x))的所有零点之和是-1.

    答案:

    9.已知yf(x)是定义域为R的奇函数,当x[0,+)时,f(x)x22x.

    (1)写出函数yf(x)的解析式;

    (2)若方程f(x)a恰有3个不同的解,求实数a的取值范围.

    解:(1)x0,则-x0

    所以f(x)x22x.又因为f(x)是奇函数,

    所以f(x)=-f(x)=-x22x.

    所以f(x)

    (2)方程f(x)a恰有3个不同的解,

    yf(x)ya的图象有3个不同的交点.

    作出yf(x)ya的图象如图所示,故若方程f(x)a恰有3个不同的解,只需-1a1

    故实数a的取值范围为(1,1)

    10(2019·济南月考)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)0的解集为{x|1x3xR}

    (1)求函数f(x)的解析式;

    (2)求函数g(x)4ln x的零点个数.

    解:(1)因为f(x)是二次函数,且关于x的不等式f(x)0的解集为{x|1x3xR}

    所以f(x)a(x1)(x3)ax22ax3a,且a0.

    所以f(x)minf(1)=-4a=-4a1.

    故函数f(x)的解析式为f(x)x22x3.

    (2)因为g(x)4ln xx4ln x2(x0)

    所以g(x)1.

    g(x)0,得x11x23.

    x变化时,g(x)g(x)的取值变化情况如下.

    x

    (0,1)

    1

    (1,3)

    3

    (3,+)

    g(x)

    0

    0

    g(x)

    极大值

    极小值

     

    0x3时,g(x)g(1)=-40.

    又因为g(x)(3,+)上单调递增,因而g(x)(3,+)上只有1个零点.故g(x)(0,+)上只有1个零点.

     

    二、专项培优练

    ()易错专练——不丢怨枉分

    1(2018·德州期末)设函数f(x)是定义在R上的奇函数,当x0时,f(x)exx3,则f(x)的零点个数为(  )

    A1  B2

    C3  D4

    解析:C 因为函数f(x)是定义域为R的奇函数,所以f(0)0,即0是函数f(x)的一个零点,当x0时,f(x)exx3为增函数.因为f(1)e113e20fe3e0,所以当x0时,f(x)有一个零点.根据对称性知,当x0时,函数f(x)也有一个零点.综上所述,f(x)的零点的个数为3.

    2(2019·六安模拟)已知函数f(x)2mx2x1在区间(2,2)上恰有一个零点,则实数m的取值范围是(  )

    A.  B.

    C.  D.

    解析:D 当m0时,函数f(x)=-x1有一个零点x=-1,满足条件.当m0时,函数f(x)2mx2x1在区间(2,2)上恰有一个零点,需满足f(2)·f(2)0得-m00m无解;解m.综上可知-m,故选D.

    3(2019·沧州质检)已知定义在R上的函数f(x)满足:f(x)f(2x)0f(x2)f(x)x[1,1]时,f(x)则函数yf(x)|x|在区间[3,3]上的零点个数为(  )

    A5  B6

    C7  D8

    解析:A 由f(x)f(2x)0可得f(x)的图象关于点(1,0)对称;由f(x2)f(x)可得f(x)的图象关于直线x=-1对称.如图,作出f(x)[1,1]上的图象,再由对称性,作出f(x)[3,3]上的图象,作出函数y|x|[3,3]上的图象,由图象观察可得它们共有5个交点,即函数yf(x)|x|在区间[3,3]上的零点个数为5.故选A.

    4函数f(x)|x1|2cos πx(4x6)的所有零点之和为________

    解析:可转化为两个函数y|x1|y=-2cos πx[4,6]上的交点的横坐标的和,因为两个函数均关于x1对称,所以两个函数在x1两侧的交点对称,则每对对称点的横坐标的和为2,分别画出两个函数的图象易知两个函数在x1两侧分别有5个交点,所以5×210.

    答案:10

    ()难点专练——适情自主选

    5.已知函数f(x)若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是(  )

    A.  B.

    C.  D.

    解析:D 若关于x的方程f(x)kx恰有4个不相等的实数根,则yf(x)的图象和直线ykx4个交点.作出函数yf(x)的图象,如图,故点(1,0)在直线ykx的下方.

    k×10,解得k.

    当直线ykxyln x相切时,设切点横坐标为m,则km.此时,kf(x)的图象和直线ykx3个交点,不满足条件,故所求k的取值范围是,故选D.

    6(2018·兰州一模)已知定义在R上的函数yf(x)对任意的x都满足f(x2)f(x),当-1x1时,f(x)sinx,若函数g(x)f(x)loga|x|至少有6个零点,则a的取值范围是(  )

    A.(5,+)  B.[5,+)

    C.(5,7)  D.[5,7)

    解析:A 当a1时,作出函数yf(x)与函数yloga|x|的图象,如图所示.

    结合图象可知a5

    0a1时,作出函数f(x)与函数yloga|x|的图象,如图所示.

    结合图象可知0a.故选A.

     

     

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020版新设计一轮复习数学(理)通用版讲义:第二章第八节函数与方程
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map