所属成套资源:2020浙江高考数学二轮复习专题精品教案
2020浙江高考数学二轮讲义:专题四高考解答题的审题与答题示范(四)
展开高考解答题的审题与答题示范(四)立体几何类解答题[思维流程]——立体几何问题重在“建”——建模、建系[审题方法]——审图形图形或者图象的力量比文字更为简洁而有力,挖掘其中蕴含的有效信息,正确理解问题是解决问题的关键.对图形或者图象的独特理解很多时候能成为问题解决中的亮点. 典例(本题满分15分)如图,在四棱锥PABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角APBC的余弦值.审题路线标准答案阅卷现场(1)由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,又PD∩PA=P,PD,PA⊂平面PAD,所以AB⊥平面PAD.①又AB⊂平面PAB,②所以平面PAB⊥平面PAD垂直模型.③ (2)在平面PAD内作PF⊥AD,垂足为点F,AB⊥平面PAD,故AB⊥PF,可得PF⊥平面ABCD.以F为坐标原点,的方向为x轴正方向,||为单位长度,建立空间直角坐标系.④由(1)及已知可得A,P,B,C.所以=,=(,0,0),=,=(0,1,0).⑤设n=(x,y,z)是平面PCB的法向量,则即可取n=(0,-1,-).⑥设m=(x′,y′,z′)是平面PAB的法向量,则即可取m=(1,0,1).⑦则cos〈n,m〉==-,⑧由图知二面角APBC为钝二面角,所以二面角APBC的余弦值为-.⑨ 第(1)问第(2)问得分点①②③④⑤⑥⑦⑧⑨3112211225分10分第(1)问踩点得分说明①证得AB⊥平面PAD得3分,直接写出不得分;②写出AB⊂平面PAB得1分,此步没有扣1分;③写出结论平面PAB⊥平面PAD得1分.第(2)问踩点得分说明④正确建立空间直角坐标系得2分;⑤写出相应的坐标及向量得2分(酌情);⑥正确求出平面PCB的一个法向量得1分,错误不得分;⑦正确求出平面PAB的一个法向量得1分,错误不得分;⑧写出公式cos〈n,m〉=得1分,正确求出值再得1分;⑨判断二面角的大小得1分,写出正确结果得1分,不写不得分.