终身会员
搜索
    上传资料 赚现金

    2020浙江高考数学二轮讲义:专题六第1讲 计数原理、二项式定理

    立即下载
    加入资料篮
    2020浙江高考数学二轮讲义:专题六第1讲 计数原理、二项式定理第1页
    2020浙江高考数学二轮讲义:专题六第1讲 计数原理、二项式定理第2页
    2020浙江高考数学二轮讲义:专题六第1讲 计数原理、二项式定理第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020浙江高考数学二轮讲义:专题六第1讲 计数原理、二项式定理

    展开

    

    第1讲 计数原理、二项式定理

    两个计数原理
    [核心提炼]
    分类加法计数原理和分步乘法计数原理
    如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.
    [典型例题]
    (1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )

    A.24    B.18    C.12    D.9
    (2)甲、乙两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情况(各人输赢局次的不同视为不同情况)共有(  )
    A.10种 B.15 C.20种 D.30种
    【解析】 (1)由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.
    (2)首先分类计算假如甲赢,比分3∶0是1种情况;比分3∶1共有3种情况,分别是前3局中(因为第四局肯定要赢),第一或第二或第三局输,其余局数获胜;比分是3∶2共有6种情况,就是说前4局2∶2,最后一局获胜,前4局中,用排列方法,从4局中选2局获胜,有6种情况.甲一共有1+3+6=10种情况获胜.所以加上乙获胜情况,共有10+10=20种情况.
    【答案】 (1)B (2)C

    应用两个计数原理解题的方法
    (1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理. 
    (2)对于复杂的两个原理综合应用的问题,可恰当列出示意图或表格,使问题形象化、直观化.
    [对点训练]
    1.如图,某教师要从A地至B地参加高考教研活动:

    路线Ⅰ:A到B有三条路线;
    路线Ⅱ:A到C后再到B,其中A到C有1条路线,C到B有2条路线;
    路线Ⅲ:从A到D,D到C,C到B,其中A到D,D到C,C到B各有2条路线,则该教师的选择路线种数共有(  )
    A.10           B.11
    C.13 D.24
    解析:选C.按路线Ⅰ,共有3种选择;按路线Ⅱ,分2步可以到达B,共有1×2=2种选择;按路线Ⅲ,分3步,共有2×2×2=8种,故共有3+2+8=13种选择.
    2.如果一个三位正整数“a1a2a3”满足a10,则x=________时,取到最小值,该最小值为________.
    解析:由规定:C==-680,由==.
    因为x>0,x+≥2,当且仅当x=时,等号成立,
    所以当x=时,得最小值.
    答案:-680  


    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map