终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2020届二轮复习等差数列与等比数列学案(全国通用)

    立即下载
    加入资料篮
    2020届二轮复习等差数列与等比数列学案(全国通用)第1页
    2020届二轮复习等差数列与等比数列学案(全国通用)第2页
    2020届二轮复习等差数列与等比数列学案(全国通用)第3页
    还剩12页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届二轮复习等差数列与等比数列学案(全国通用)

    展开

    第1讲 等差数列与等比数列

    [做真题]
    题型一 等差数列
    1.(2019·高考全国卷Ⅰ)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则(  )
    A.an=2n-5       B.an=3n-10
    C.Sn=2n2-8n D.Sn=n2-2n
    解析:选A.法一:设等差数列{an}的公差为d,
    因为
    所以
    解得
    所以an=a1+(n-1)d=-3+2(n-1)=2n-5,Sn=na1+d=n2-4n.故选A.
    法二:设等差数列{an}的公差为d,
    因为
    所以
    解得
    选项A,a1=2×1-5=-3;
    选项B,a1=3×1-10=-7,排除B;
    选项C,S1=2-8=-6,排除C;
    选项D,S1=-2=-,排除D.故选A.
    2.(2018·高考全国卷Ⅰ)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1=2,则a5=(  )
    A.-12 B.-10
    C.10 D.12
    解析:选B.设等差数列{an}的公差为d,因为3S3=S2+S4,所以3(3a1+d)=2a1+d+4a1+d,解得d=-a1,因为a1=2,所以d=-3,所以a5=a1+4d=2+4×(-3)=-10.故选B.
    3.(2017·高考全国卷Ⅲ)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为(  )
    A.-24 B.-3
    C.3 D.8
    解析:选A.设等差数列{an}的公差为d,因为a2,a3,a6成等比数列,所以a2a6=a,即(a1+d)(a1+5d)=(a1+2d)2,又a1=1,所以d2+2d=0,又d≠0,则d=-2,所以a6=a1+5d=-9,所以{an}前6项的和S6=×6=-24,故选A.
    4.(2019·高考全国卷Ⅲ)记Sn为等差数列{an}的前n项和.若a1≠0,a2=3a1,则=________.
    解析:设等差数列{an}的公差为d,由a2=3a1,即a1+d=3a1,得d=2a1,
    所以====4.
    答案:4
    题型二 等比数列
    1.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=(  )
    A.16           B.8
    C.4 D.2
    解析:选C.设等比数列{an}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{an}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.
    2.(2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )
    A.1盏 B.3盏
    C.5盏 D.9盏
    解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{an},则前7项的和S7=381,公比q=2,依题意,得S7==381,解得a1=3,故选B.
    3.(2019·高考全国卷Ⅰ)记Sn为等比数列{an}的前n项和.若a1=,a=a6,则S5=________.
    解析:通解:设等比数列{an}的公比为q,因为a=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.
    优解:设等比数列{an}的公比为q,因为a=a6,所以a2a6=a6,所以a2=1,又a1=,所以q=3,所以S5===.
    答案:
    4.(2018·高考全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3.
    (1)求{an}的通项公式;
    (2)记Sn为{an}的前n项和.若Sm=63,求m.
    解:(1)设{an}的公比为q,由题设得an=qn-1.
    由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.
    故an=(-2)n-1或an=2n-1.
    (2)若an=(-2)n-1,则Sn=.
    由Sm=63得(-2)m=-188,此方程没有正整数解.
    若an=2n-1,则Sn=2n-1.
    由Sm=63得2m=64,解得m=6.
    综上,m=6.
    题型三 等差、等比数列的判定与证明
    (2019·高考全国卷Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
    (1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
    (2)求{an}和{bn}的通项公式.
    解:(1)证明:由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=(an+bn).
    又因为a1+b1=1,所以{an+bn}是首项为1,公比为的等比数列.
    由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.
    又因为a1-b1=1,所以{an-bn}是首项为1,公差为2的等差数列.
    (2)由(1)知,an+bn=,an-bn=2n-1.
    所以an=[(an+bn)+(an-bn)]=+n-,
    bn=[(an+bn)-(an-bn)]=-n+.
    [明考情]
    等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题.


    等差、等比数列的基本运算
    [典型例题]
    (1)已知等比数列{an}的前n项和为Sn,若a1=1,=,则数列{an}的公比q为(  )
    A.4          B.2
    C. D.
    (2)(2019·开封模拟)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=3.
    ①若a3+b3=7,求{bn}的通项公式;
    ②若T3=13,求Sn.
    【解】 (1)选C.因为=≠2,所以q≠1.所以==1+q5,所以1+q5=,所以q=.
    (2)①设数列{an}的公差为d,数列{bn}的公比为q,
    则an=-1+(n-1)d,bn=qn-1.
    由a2+b2=3,得d+q=4,(*)
    由a3+b3=7,得2d+q2=8,(**)
    联立(*)(**),解得q=2或q=0(舍去),
    因此数列{bn}的通项公式为bn=2n-1.
    ②因为T3=1+q+q2,所以1+q+q2=13,
    解得q=3或q=-4,
    由a2+b2=3,得d=4-q,
    所以d=1或d=8.
    由Sn=na1+n(n-1)d,
    得Sn=n2-n或Sn=4n2-5n.

    等差、等比数列问题的求解策略
    (1)抓住基本量,首项a1、公差d或公比q;
    (2)熟悉一些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差数列,通项公式为an=p·qn-1(p,q≠0)的形式的数列为等比数列;
    (3)由于等比数列的通项公式、前n项和公式中变量n在指数位置,所以常采用两式相除(即比值的方式)进行相关计算. 
    [对点训练]
    1.(一题多题)(2019·沈阳市质量监测(一))已知等差数列{an}的前n项和为Sn.若a1=12,S5=90,则等差数列{an}的公差d=(  )
    A.2 B.
    C.3 D.4
    解析:选C.法一:依题意,5×12+d=90,解得d=3,故选C.
    法二:因为等差数列{an}中,S5=90,所以5a3=90,即a3=18,因为a1=12,所以2d=a3-a1=18-12=6,所以d=3,故选C.
    2.(一题多题)(2019·福州市质量检测)等比数列{an}的各项均为正实数,其前n项和为Sn.若a3=4,a2a6=64,则S5=(  )
    A.32 B.31
    C.64 D.63
    解析:选B.通解:设首项为a1,公比为q,因为an>0,所以q>0,由条件得,解得,所以S5=31,故选B.
    优解:设首项为a1,公比为q,因为an>0,所以q>0,由a2a6=a=64,a3=4,得q=2,a1=1,所以S5=31,故选B.
    3.(2019·武昌区调研考试)设{an}是公差不为零的等差数列,Sn为其前n项和,已知S1,S2,S4成等比数列,且a3=5,则数列{an}的通项公式为________.
    解析:设数列{an}的公差为d(d≠0),因为{an}是等差数列,S1,S2,S4成等比数列,所以(a1+a2)2=a1(a1+a2+a3+a4),因为a3=5,所以(5-2d+5-d)2=(5-2d)(5-2d+15),解得d=2或d=0(舍去),所以5=a1+(3-1)×2,即a1=1,所以an=2n-1.
    答案:an=2n-1

    等差(比)数列的性质
    [典型例题]
    (1)(2019·贵州省适应性考试)等差数列{an}中,a2与a4是方程x2-4x+3=0的两个根,则a1+a2+a3+a4+a5=(  )
    A.6          B.8
    C.10 D.12
    (2)在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为(  )
    A.- B.-
    C. D.-或
    (3)(2019·长春质量检测)设Sn是等差数列{an}的前n项和,若S4≠0,且S8=3S4,S12=λS8,则λ=(  )
    A. B.
    C.2 D.3
    【解析】 (1)根据题意有a2+a4=4,在等差数列{an}中,a2+a4=a1+a5=2a3=4⇒a3=2,所以a1+a2+a3+a4+a5=5a3=10.故选C.
    (2)设等比数列{an}的公比为q,因为a3,a15是方程x2+6x+2=0的根,所以a3·a15=a=2,a3+a15=-6,所以a3an+1,所以数列{an}是递减数列,所以解得

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map