2020二轮复习(理) 等差数列、等比数列作业 练习
展开专题限时集训(三) 等差数列、等比数列[专题通关练](建议用时:30分钟)1.[一题多解]已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于( )A.1 B. C.2 D.3C [法一:(基本量法)由题设得解得故选C.法二:(性质法)因为S3==12,所以a1+a3=8,所以2a2=8,即a2=4.又a3=6,故公差d=a3-a2=6-4=2.故选C.]2.设Sn为等差数列{an}的前n项和,且2+a5=a6+a3,则S7=( )A.28 B.14C.7 D.2B [∵{an}是等差数列,∴a3+a6=a4+a5=a5+2,∴a4=2.∴S7=7a4=7×2=14.故选B.]3.[易错题]在等比数列{an}中,a3,a15是方程x2-6x+8=0的两根,则的值为( )A.2 B.4C.±2 D.±4A [∵a3,a15是方程x2-6x+8=0的根,∴a3a15=8,a3+a15=6,易知a3,a15均为正,∴a9=a3q6>0.由等比数列的性质知,a1a17=a=a3a15=8,∴a9=2,=2,故选A.]4.设公比为q(q>0)的等比数列的前n项和为Sn,若S2=3a2+2,S4=3a4+2,则a1等于( )A.-2 B.-1 C. D.B [S4-S2=a3+a4=3a4-3a2 ,即3a2+a3-2a4=0,即3a2+a2q-2a2q2=0 ,即2q2-q-3=0,解得q=-1 (舍)或q=,当q= 时,代入S2=3a2+2,得a1+a1q=3a1q+2,解得a1=-1,故选B.]5.设等差数列{an}的前n项和为Sn,且a1>0,a3+a10>0,a6a7<0,则满足Sn>0的最大自然数n的值为( )A.6 B.7 C.12 D.13C [∵a1>0,a6a7<0,∴a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0, a1+a13=2a7<0,∴S12>0,S13<0,∴满足Sn>0的最大自然数n的值为12.]6.[易错题]已知等比数列{an}的前n项和为Sn,且a2=,S3=,则公比q=________.1 [(1)当公比q=1时,S3=3a1=3a2=,满足题意.(2)当公比q≠1时,由S3=a1+a2+a3=,可知a1+a3=3,∴+=3得q=1(舍去).综上可知,q=1.]7.(2019·武汉模拟)已知等差数列{an}的前n项和为Sn,若a1=1,S3=a5,am=2 019,则m=________.1 010 [设公差为d,由题知S3=a5,即3a1+3d=a1+4d,又a1=1,故d=2,于是an=1+2(n-1)=2n-1,再由2m-1=2 019,得m=1 010.]8.若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大.8 [∵{an}成等差数列,∴由a7+a8+a9>0可得a8>0,又a7+a10<0,∴a8+a9<0,故a8>0,a9<0,∴当n=8时,Sn最大.][能力提升练](建议用时:20分钟)9.(2019·马鞍山二模)已知正项等比数列{an}的前n项和为Sn,a1=1,且-a3,a2,a4成等差数列,则Sn与an的关系是( )A.Sn=2an-1 B.Sn=2an+1C.Sn=4an-3 D.Sn=4an-1A [设等比数列的公比q(q>0),由a1=1,且-a3,a2,a4成等差数列,得2a2=a4-a3,即2q=q3-q2,得q=2,∴an=2n-1,Sn==2n-1,则Sn=2an-1.故选A.]10.已知数列{an}是等比数列,数列{bn}是等差数列,若a1·a6·a11=3,b1+b6+b11=7π,则tan=________.- [∵{an}是等比数列,{bn}是等差数列,且a1·a6·a11=3,b1+b6+b11=7π,∴a=()3,3b6=7π,∴a6=,b6=,∴tan=tan=tan=tan=-.]11.已知数列{an}满足a1=-40,且nan+1-(n+1)an=2n2+2n,则an取最小值时n的值为________.10或11 [由nan+1-(n+1)an=2n2+2n=2n(n+1),两边同时除以n(n+1),得-=2,所以数列是首项为-40、公差为2的等差数列,所以=-40+(n-1)×2=2n-42,所以an=2n2-42n,对于二次函数f(x)=2x2-42x,在x=-=-=10.5时,f(x)取得最小值,因为n取正整数,且10和11到10.5的距离相等,所以n取10或11时,an取最小值.]12.(2019·长春三模)已知数列{an}满足an+1=2an+3×2n,a1=2,数列{bn}满足bn+1=bn+2n+1,b1=1.(1)证明:数列是等差数列;(2)求数列{bn}的通项公式.[解](1)证明:根据题意,数列{an}满足an+1=2an+3×2n,等式两边除以2n+1得=+,故数列是以=1为首项,为公差的等差数列.(2)根据题意,由bn+1=bn+2n+1得bn+1-bn=2n+1,则bn-bn-1=2(n-1)+1=2n-1,则bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=(2n-1)+(2n-3)+…+3+1==n2.题号内容押题依据1等差数列基本量的运算,等差数列的性质以等差数列为载体,考查数列中“知三求二”的基本量求法,考查等价转化能力和解方程的意识,具有较好的代表性2等比数列的概念,等差(比)数列的前n项和公式以数列递推关系为载体,考查等差(比)数列的基本概念及判定方法,考查考生的逻辑推理及数学运算能力【押题1】 正项等差数列{an}的前n项和为Sn,已知a1=1,a3+a7-a+15=0,且Sn=45,则n=( )A.8 B.9C.10 D.11B [因为{an}是正项等差数列,a3+a7-a+15=0,所以a-2a5-15=0,解得a5=5(a5=-3舍去).设{an}的公差为d,由a5=a1+4d=1+4d=5,解得d=1.所以Sn====45,即(n+1)n=90,进而得n2+n-90=(n+10)(n-9)=0,解得n=9(n=-10舍去),故选B.]【押题2】 已知数列{an}满足a1=a,2an-an+1=n-1,设bn=an-n.(1)判断数列{bn}是否为等比数列,并说明理由;(2)若a=2,求{an}的前n项和Sn.[解](1)根据题意,数列{an}满足2an-an+1=n-1,变形可得2an-2n=an+1-(n+1),又由bn=an-n,则2bn=bn+1,又由a1=a,则b1=a-1,当a≠1时,b1≠0,则数列{bn}为等比数列,当a=1时,b1=0,则数列{bn}不是等比数列.(2)由(1)的结论,a=2,则b1=a-1=1,数列{bn}是首项为1,公比为2的等比数列,则bn=1×2n-1=2n-1,即an-n=2n-1,则an=2n-1+n,则Sn=20+1+21+2+22+3+…+2n-1+n=(20+21+…+2n-1)+(1+2+3+…+n)=2n-1+.