四川省成都列五中学2024-2025学年高三上学期12月月考(全科)数学
展开
这是一份四川省成都列五中学2024-2025学年高三上学期12月月考(全科)数学,文件包含四川省成都列五中学2024-2025学年高三上学期12月月考数学docx、四川省成都列五中学2024-2025学年高三上学期12月月考数学答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
1.一个容量为的样本,其数据依次为:。则该组数据的第百分位数为( )
A. B. C. D.
2.记为等差数列的前项和,若,则( )
A. B. C. D.
3.若,则( )
A. B. C. D.
4.直线被圆截得的最短弦的弦长为( )
A. B. C. D.
5.已知函数在上单调递增,则的取值范围是( )
A. B. C. D.
6.已知四面体内接于球,若,平面平面,则球的表面积是( )
A. B. C. D.
7.已知直线与抛物线相交于两点,以为直径的圆与抛物线的准线相切于点,则( )
A. B. C. D.
8.点是所在平面内的点,且有,直线分别交于点,记的面积分别为,则( )
A. B. C. D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得2分,有选错的得0分。
9.一口袋中有除颜色外完全相同的3个红球和2个白球,从中无放回的随机取两次,每次取1个球,记事件A1:第一次取出的是红球;事件A2:第一次取出的是白球;事件B:取出的两球同色;事件C:取出的两球中至少有一个红球,则( )
A. 事件,为互斥事件B. 事件B,C为独立事件
C. D.
10.下列命题为真命题的是( )
A. 已知是双曲线C的两个焦点,P为C上一点,且,则双曲线C的离心率为
B. “”在上恒成立的充要条件是“”
C. 已知函数的定义域为为奇函数,为偶函数,则
D. 设,,,则的大小关系为
11.已知函数在区间上单调,对,满足,且,则下列说法正确的是( )
A. 若函数在区间上单调,则
B. 若函数在上恰存在个极值点,则
C. 函数在上有四个零点,则
D. 若,,则
三、填空题:本题共3小题,每小题5分,共15分.
12.已知复数(其中为虚数单位),
13.为进一步强化学校美育育人功能,构建德智体美劳全面培养的教育体系,某校开设了音乐、美术、书法三门选修课程.该校某班级有5名同学分别选修其中一门课程学习,每门课程至少有一位同学选修,则恰好有2位同学选修音乐的概率为
14.已知函数在上单调递增,则的最大值为
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(13分)如图,在直三棱柱中,分别是的中点,,。① 求证:平面;② 求平面与平面夹角的余弦值.
16.(15分)在三角形中,内角的对边分别为,且。① 求;②若,且,求的取值范围.
17.(15分)已知椭圆的离心率为,过点的直线交椭圆于点,且当轴时,。① 求椭圆的方程;② 椭圆的左焦点为,若的外心在轴上,求直线的方程.
18.(17分)已知函数。① 当,求的最大值;② 若存在极大值,求实数的取值范围.
19.(17分)对于一个给定的数列,令,则数列称为数列的一阶和数列,再令,则数列称为数列的二阶和数列,以此类推,可得数列的阶和数列。① 数列的二阶和数列是等比数列,且,求;② 若,求数列的二阶和数列的前项和;③ 若数列是首项为的等差数列,是数列的一阶和数列,且,,求正整数的最大值,以及取最大值时数列的公差.
相关试卷
这是一份四川省成都市列五中学2024-2025学年高三上学期12月月考数学试题(Word版附答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学-四川省成都列五中学2024-2025学年高三上学期9月月考试题和答案,共24页。
这是一份四川省成都列五中学2024-2025学年高三上学期9月月考数学试题,文件包含数学试卷docx、数学答案docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。