所属成套资源:人教A版高一数学寒假讲义+巩固练习+随堂检测(2份,原卷版+教师版)
- (复习课)人教A版高一数学寒假讲义第04讲 指数函数与对数函数+巩固练习+随堂检测(2份,原卷版+教师版) 试卷 0 次下载
- (复习课)人教A版高一数学寒假讲义第05讲 三角函数+巩固练习+随堂检测(2份,原卷版+教师版) 试卷 0 次下载
- (预习课)人教A版高一数学寒假讲义第07讲 平面向量的运算+巩固练习+随堂检测(2份,原卷版+教师版) 试卷 0 次下载
- (预习课)人教A版高一数学寒假讲义第08讲 平面向量基本定理及坐标表示+巩固练习+随堂检测(2份,原卷版+教师版) 试卷 0 次下载
- (预习课)人教A版高一数学寒假讲义第09讲 平面向量的应用+巩固练习+随堂检测(2份,原卷版+教师版) 试卷 0 次下载
(预习课)人教A版高一数学寒假讲义第06讲 平面向量的概念+巩固练习+随堂检测(2份,原卷版+教师版)
展开
这是一份(预习课)人教A版高一数学寒假讲义第06讲 平面向量的概念+巩固练习+随堂检测(2份,原卷版+教师版),文件包含预习课人教A版高一数学寒假讲义第06讲平面向量的概念+巩固练习+随堂检测教师版docx、预习课人教A版高一数学寒假讲义第06讲平面向量的概念+巩固练习+随堂检测教师版pdf、预习课人教A版高一数学寒假讲义第06讲平面向量的概念+巩固练习+随堂检测原卷版docx、预习课人教A版高一数学寒假讲义第06讲平面向量的概念+巩固练习+随堂检测原卷版pdf等4份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
1、了解向量的实际背景和概念.
2、清楚向量的几何表示.
3、区分相等向量与共线向量.
【考点目录】
考点一:向量的基本概念
考点二:向量的表示方法
考点三:利用向量相等或共线进行证明
考点四:向量知识在实际问题中的简单应用
【基础知识】
知识点一:向量的概念
1、向量:既有大小又有方向的量叫做向量.
2、数量:只有大小,没有方向的量(如年龄、身高、长度、面积、体积和质量等),称为数量.
知识点诠释:
(1)本书所学向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移.
(2)看一个量是否为向量,就要看它是否具备了大小和方向两个要素.
(3)向量与数量的区别:数量与数量之间可以比较大小,而向量与向量之间不能比较大小.
知识点二:向量的表示法
1、有向线段:具有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.
2、向量的表示方法:
(1)字母表示法:如等.
(2)几何表示法:以A为始点,B为终点作有向线段(注意始点一定要写在终点的前面).如果用一条有向线段表示向量,通常我们就说向量.
知识点诠释:
(1)用字母表示向量便于向量运算;
(2)用有向线段来表示向量,显示了图形的直观性.应该注意的是有向线段是向量的表示,不是说向量就是有向线段.由于向量只含有大小和方向两个要素,用有向线段表示向量时,与它的始点的位置无关,即同向且等长的有向线段表示同一向量或相等的向量.
知识点三:向量的有关概念
1、向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度).
知识点诠释:
(1)向量的模.
(2)向量不能比较大小,但是实数,可以比较大小.
2、零向量:长度为零的向量叫零向量.记作,它的方向是任意的.
3、单位向量:长度等于1个单位的向量.
知识点诠释:
(1)在画单位向量时,长度1可以根据需要任意设定;
(2)将一个向量除以它的模,得到的向量就是一个单位向量,并且它的方向与该向量相同.
4、相等向量:长度相等且方向相同的向量.
知识点诠释:
在平面内,相等的向量有无数多个,它们的方向相同且长度相等.
知识点四:向量的共线或平行
方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量).
规定:与任一向量共线.
知识点诠释:
1、零向量的方向是任意的,注意与0的含义与书写区别.
2、平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
3、共线向量与相等向量的关系:相等向量一定是共线向量,但共线向量不一定是相等的向量.
【考点剖析】
考点一:向量的基本概念
例1.给出如下命题:
①向量的长度与向量的长度相等;
②向量与平行,则与的方向相同或相反;
③两个有共同起点而且相等的向量,其终点必相同;
④两个公共终点的向量,一定是共线向量;
⑤向量与向量是共线向量,则点,,,必在同一条直线上.
其中正确的命题个数是( )
A.1B.2C.3D.4
例2.给出下列四个命题:①若,则;②若,则或;③若,则;④有向线段就是向量,向量就是有向线段;其中,正确的命题有( )
A.0个B.1个C.2个D.3个
例3.给出下列命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的个数是( )
A.0B.1C.2D.3
考点二:向量的表示方法
例4.如图,和是在各边的三等分点处相交的两个全等的正三角形,设的边长为a,写出图中给出的长度为的所有向量中,
例5.在如图的方格纸(每个小方格的边长为1)上,已知向量.
(1)试以B为起点画一个向量,使;
(2)画一个以C为起点的向量,使||=2,并说出的终点的轨迹是什么.
考点三:利用向量相等或共线进行证明
例6.如图,四边形ABCD的对角线AC与BD交于点O,且,.求证:四边形ABCD是平行四边形.
例7.在平行四边形中,E,F分别是,的中点,如图所示.
(1)写出与向量共线的向量;
(2)求证:.
考点四:向量知识在实际问题中的简单应用
例8.一艘军舰从基地A出发向东航行了200海里到达基地B,然后改变航线向东偏北航行了400海里到达C岛,最后又改变航线向西航行了200海里到达D岛.
(1)试作出向量; (2)求.
例9.一艘海上巡逻艇从港口向北航行了,这时接到求救信号,在巡逻艇的正东方向处有一艘渔船抛锚需救助.试求:
(1)巡逻艇从港口出发到渔船出事点所航行的路程;
(2)巡逻艇从港口出发到渔船出事点的位移.
【真题演练】
1.(2022·黑龙江·齐齐哈尔三立高级中学有限公司高一阶段练习)下列物理量中哪个是向量( )
A.质量B.功C.温度D.力
2.(2022·江苏·滨海县五汛中学高一阶段练习)下列命题中正确的是( )
A.单位向量都相等B.相等向量一定是共线向量
C.若,则D.任意向量的模都是正数
3.(2022·山东东营·高一期中)设点是正三角形的中心,则向量,,是( )
A.相同的向量B.模相等的向量C.共起点的向量D.共线向量
4.(2022·内蒙古大学满洲里学院附属中学高一期末)给出下列命题:
①两个具有共同终点的向量,一定是共线向量;
②若是不共线的四点,则是四边形为平行四边形的充要条件;
③若与同向,且,则>;
④λ,μ为实数,若λ=μ,则与共线.
其中假命题的个数为( )
A.1 B.2 C.3 D.4
5.(多选题)(2022·吉林·延边第一中学高一期中)下列说法正确的是( )
A.与是非零向量,则与同向是的必要不充分条件
B.是互不重合的三点,若与共线,则三点在同一条直线上
C.与是非零向量,若与同向,则与反向
D.设为实数,若,则与共线
6.(2022·全国·高一课时练习)下列各量中,是向量的是___________.(填序号)
①密度;②体积;③重力;④质量.
7.(2022·全国·高一课时练习)如图所示,在平行四边形中,,分别是,的中点.
(1)写出与向量共线的向量;
(2)求证:.
8.(2022·全国·高一课时练习)在如图的方格纸上,已知向量,每个小正方形的边长为1.
(1)试以B为终点画一个向量,使;
(2)在图中画一个以A为起点的向量,使,并说出向量的终点的轨迹是什么?
【过关检测】
一、单选题
1.下列说法正确的是( )
A.若,则
B.若,则存在唯一实数使得
C.若,,则
D.与非零向量共线的单位向量为
2.下列命题正确的是( )
A.单位向量都相等B.任一向量与它的相反向量不相等
C.平行向量不一定是共线向量D.模为0的向量与任意向量共线
3.给出下列说法:①零向量是没有方向的;②零向量的长度为0;③零向量的方向是任意的;④单位向量的模都相等.其中正确的有( )
A.1个B.2个C.3个D.4个
4.若为任一非零向量,的模为1,给出下列各式:①;②﹔③;④.其中正确的是( )
A.①④B.③C.①②③D.②③
5.如图,四边形ABCD是等腰梯形,则下列关系中正确的是( )
A.B.C.D.
6.下列命题中正确的是( )
A.两个有共同起点且相等的向量,其终点必相同
B.两个有公共终点的向量,一定是共线向量
C.两个有共同起点且共线的向量,其终点必相同
D.若与是共线向量,则点A,B,C,D必在同一条直线上
7.下列结论中,正确的是( )
A.长的有向线段不可能表示单位向量
B.若O是直线l上的一点,单位长度已选定,则l上有且只有两个点A,B,使得,是单位向量
C.方向为北偏西30°的向量与南偏东30°的向量不可能是共线向量
D.一人从A点向东走500米到达B点,则向量不能表示这个人从A点到B点的位移
8.设是单位向量,,,,则四边形是( )
A.梯形B.菱形C.矩形D.正方形
二、多选题
9.以下选项中,能使成立的条件有( )
A.B.或
C.D.与都是单位向量
10.下面的命题正确的有( )
A.方向相反的两个非零向量一定共线
B.单位向量都相等
C.若,满足且与同向,则
D.“若A、B、C、D是不共线的四点,且”“四边形ABCD是平行四边形”
11.下列叙述中错误的是( )
A.若,则
B.若,则与方的方向相同或相反
C.若且,,则
D.对任一向量,是一个单位向量
12.下列说法中正确的是( )
A.若为单位向量,则B.若与共线,则或
C.若,则D.是与非零向量共线的单位向量
三、填空题
13.若为任一非零向量,为单位向量,给出下列说法:
①; ②;③; ④;⑤若是与同向的单位向量,则.
其中正确的说法有______个.
14.下列说法正确的是__________(写序号).
①若与共线,则点A、B、C、D共线;
②四边形为平行四边形,则;
③若,则;
④四边形中,,则四边形为正方形.
15.已知圆O的周长是,是圆O的直径,C是圆周上一点,于点D,则___________.
16.“”是“A,B,C,D四点共线”的________条件.
四、解答题
17.在平面直角坐标系中,已知,与x轴的正方向所成的角为30°,与y轴的正方向所成的角为120°,试作出.
18.如图,是正六边形的中心,且,,.在以这七个点中任意两点为起点和终点的向量中,问:
(1)与相等的向量有哪些?
(2)的相反向量有哪些?
(3)与的模相等的向量有哪些?
19.在平行四边形中,,分别为边、的中点,如图.
(1)写出与向量共线的向量;
(2)求证:.
20.判断下列各小题中的向量与是否共线.
(1)
(2) ,
21.在如图的方格纸上,已知向量,每个小正方形的边长为1.
(1)试以B为终点画一个向量,使;
(2)在图中画一个以A为起点的向量,使,并说出向量的终点的轨迹是什么?
22.如图,半圆的直径,是半圆上的一点,、分别是、上的点,且,,.
(1)求证:;
(2)求.
平面向量的概念 随堂检测
1.如图,在平行四边形中,( )
A.B.C.D.
2.如图所示,梯形ABCD为等腰梯形,则两腰上的向量与的关系是( )
A.=B.C.>D.<
3.下列命题中正确的个数是( )
①起点相同的单位向量,终点必相同;
②已知向量,则四点必在一直线上;
③若,则;
④共线的向量,若起点不同,则终点一定不同.
A.0B.1C.2D.3
4.下列说法正确的是( )
A.若,则
B.若,则存在唯一实数使得
C.若,,则
D.与非零向量共线的单位向量为
5.(多选)下列说法中正确的是( )
A.若为单位向量,则B.若与共线,则或
C.若,则D.是与非零向量共线的单位向量
6.给出下列四个说法:①若,则;②若,则或;③若,则;④若,,则.其中错误的说法有( )
A.1B.2C.3D.4
7.已知P在所在平面内,满足,则P是的( )
A.外心B.内心C.垂心D.重心
8.若是任一非零向量,是单位向量,下列各式:①;②;③;④;⑤,其中正确的有( )
A.③④⑤B.②③⑤C.①③④D.③④
9.(多选)下列说法正确的是( )
A.与是非零向量,则与同向是的必要不充分条件
B.是互不重合的三点,若与共线,则三点在同一条直线上
C.与是非零向量,若与同向,则与反向
D.设为实数,若,则与共线
10.(多选)下面的命题正确的有( )
A.方向相反的两个非零向量一定共线
B.单位向量都相等
C.若,满足且与同向,则
D.“若A、B、C、D是不共线的四点,且”“四边形ABCD是平行四边形”
11.(多选)设为单位向量,下列命题是假命题的为( )
A.若为平面内的某个向量,则
B.若与平行,则
C.若与平行且,则
D.若为单位向量,则
12.在下图田字格中,以图中的结点为向量的起点或终点.
(1)写出与相等的向量;
(2)写出与平行的向量;
(3)写出的负向量.
相关试卷
这是一份(预习课)人教A版高一数学寒假讲义第12讲 基本立体图形+巩固练习+随堂检测(2份,原卷版+教师版),文件包含预习课人教A版高一数学寒假讲义第12讲基本立体图形+巩固练习+随堂检测教师版docx、预习课人教A版高一数学寒假讲义第12讲基本立体图形+巩固练习+随堂检测教师版pdf、预习课人教A版高一数学寒假讲义第12讲基本立体图形+巩固练习+随堂检测原卷版docx、预习课人教A版高一数学寒假讲义第12讲基本立体图形+巩固练习+随堂检测原卷版pdf等4份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
这是一份(预习课)人教A版高一数学寒假讲义第11讲 复数的四则运算+巩固练习+随堂检测(2份,原卷版+教师版),文件包含预习课人教A版高一数学寒假讲义第11讲复数的四则运算+巩固练习+随堂检测教师版docx、预习课人教A版高一数学寒假讲义第11讲复数的四则运算+巩固练习+随堂检测教师版pdf、预习课人教A版高一数学寒假讲义第11讲复数的四则运算+巩固练习+随堂检测原卷版docx、预习课人教A版高一数学寒假讲义第11讲复数的四则运算+巩固练习+随堂检测原卷版pdf等4份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
这是一份(预习课)人教A版高一数学寒假讲义第10讲 复数的概念+巩固练习+随堂检测(2份,原卷版+教师版),文件包含预习课人教A版高一数学寒假讲义第10讲复数的概念+巩固练习+随堂检测教师版docx、预习课人教A版高一数学寒假讲义第10讲复数的概念+巩固练习+随堂检测教师版pdf、预习课人教A版高一数学寒假讲义第10讲复数的概念+巩固练习+随堂检测原卷版docx、预习课人教A版高一数学寒假讲义第10讲复数的概念+巩固练习+随堂检测原卷版pdf等4份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。