所属成套资源:2025年新高考数学一轮复习【精品讲义+练习】第二部分(学生版+教师版)
- 2025年新高考数学一轮复习第10章第07讲离散型随机变量及其分布列、数字特征(六大题型)(练习)练习(学生版+教师版) 试卷 0 次下载
- 2025年新高考数学一轮复习第10章第07讲离散型随机变量及其分布列、数字特征(六大题型)(讲义)练习(学生版+教师版) 试卷 0 次下载
- 2025年新高考数学一轮复习第11章重难点突破01高等数学定理背景下新定义(六大题型)练习(学生版+教师版) 试卷 0 次下载
- 2025年新高考数学一轮复习第11章重难点突破02线性代数背景下新定义(四大题型)练习(学生版+教师版) 试卷 0 次下载
- 2025年新高考数学一轮复习第11章重难点突破03高等背景下概率论新定义(七大题型)练习(学生版+教师版) 试卷 0 次下载
2025年新高考数学一轮复习第十章第10章计数原理、概率、随机变量及其分布(测试)练习(学生版+教师版)
展开
这是一份2025年新高考数学一轮复习第十章第10章计数原理、概率、随机变量及其分布(测试)练习(学生版+教师版),文件包含2025年新高考数学一轮复习第10章第十章计数原理概率随机变量及其分布测试教师版docx、2025年新高考数学一轮复习第10章第十章计数原理概率随机变量及其分布测试学生版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知的分布列为:
设则的值为( )
A.B.C.D.5
2.抛掷一枚质地均匀且各个面上分别标有数字的正方体玩具.设事件为“向上一面点数为偶数”,事件为“向上一面点数为6的约数”,则等于( )
A.B.C.D.
3.在二项式的展开式中,常数项为( )
A.180B.270C.360D.540
4.某商场举办购物抽奖活动,其中将抽到的各位数字之和为8的四位数称为“幸运数”(如2024是“幸运数”),并获得一定的奖品,则首位数字为2的“幸运数”共有( )
A.32个B.28个C.27个D.24个
5.已知,则( )
(注:若随机变量,则)
A.0.1587B.0.8413C.1D.0.4206
6.如果随机变量,且,则( )
A.B.C.D.
7.小刚参与一种答题游戏,需要解答A,B,C三道题.已知他答对这三道题的概率分别为,,,且各题答对与否互不影响,若他恰好能答对两道题的概率为,则他三道题都答错的概率为( )
A.B.C.D.
8.如图,从1开始出发,一次移动是指:从某一格开始只能移动到邻近的一格,并且总是向右或向上或右下移动,而一条移动路线由若干次移动构成,如从1移动到11:1→2→3→5→7→8→9→10→11就是一条移动路线.从1移动到数字的不同路线条数记为,从1移动到11的事件中,跳过数字的概率记为,则下列结论正确的是( )
①,②,③,④.
A.①②③B.①②④C.②③④D.①②③④
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.假设是两个事件,且,,,则( )
A.B.C.D.
10.第19届亚运会于2023年9月23日至10月8日在杭州举行.现安排小明、小红、小兵3名志愿者到甲、乙、丙、丁四个场馆进行服务.每名志愿者只能选择一个场馆,且允许多人选择同一个场馆,下列说法中正确的有( )
A.所有可能的方法有34种
B.若场馆甲必须有志愿者去,则不同的安排方法有37种
C.若志愿者小明必须去场馆甲,则不同的安排方法有16种
D.若三名志愿者所选场馆各不相同,则不同的安排方法有24种
11.端午将至,超市特推出“粽情一夏,情浓端午”为主题的甲乙两款端午粽子礼盒,但是由于工作人员分装时的疏忽,礼盒内的粽子发生了错乱,此时甲款礼盒内已有一个肉粽,乙款礼盒内有三个肉粽和三个甜粽,现从乙款礼盒内随机取出个粽子,其中含个肉粽,放入甲款礼盒后,再从甲款礼盒内随机取出一个粽子,记取到肉粽的个数为,其中,下列说法正确的是( )
A.当时,随机变量服从两点分布B.随着的增大,减少,增加
C.当时,随机变量服从二项分布D.随着的增大,增加,减小
(1)(i)共有多少种不同的栽种方法;
(ⅱ)记“在③和⑤区域栽种不同的花卉”为事件A,“完成该标志花卉的栽种共用了4种不同的花卉”为事件,求;
(2)设完成该标志的栽种所用的花卉品种数为,求的概率分布及期望.
17.(15分)
足球比赛积分规则为:球队胜一场积分,平一场积分,负一场积分.常州龙城足球队年月将迎来主场与队和客场与队的两场比赛.根据前期比赛成绩,常州龙城队主场与队比赛:胜的概率为,平的概率为,负的概率为;客场与队比赛:胜的概率为,平的概率为,负的概率为,且两场比赛结果相互独立.
(1)求常州龙城队月主场与队比赛获得积分超过客场与队比赛获得积分的概率;
(2)用表示常州龙城队月与队和队比赛获得积分之和,求的分布列与期望.
18.(17分)
某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:.根据长期检测结果,得到芯片的质量指标值服从正态分布,并把质量指标值不小于80的产品称为等品,其它产品称为等品. 现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.
(1)根据长期检测结果,该芯片质量指标值的标准差的近似值为11,用样本平均数作为的近似值,用样本标准差作为的估计值. 若从生产线中任取一件芯片,试估计该芯片为等品的概率(保留小数点后面两位有效数字);
(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量服从正态分布,则,. )
(2)(i)从样本的质量指标值在和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为,求的分布列和数学期望;
(ii)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装. 已知一件等品芯片的利润是元,一件等品芯片的利润是元,根据(1)的计算结果,试求的值,使得每箱产品的利润最大.
19.(17分)
设离散型随机变量X,Y的取值分别为,.定义X关于事件“”的条件数学期望为:.已知条件数学期望满足全期望公式:.解决如下问题:
为了研究某药物对于微生物A生存状况的影响,某实验室计划进行生物实验.在第1天上午,实验人员向培养皿中加入10个A的个体.从第1天开始,实验人员在每天下午向培养皿中加入该种药物.当加入药物时,A的每个个体立即以相等的概率随机产生1次如下的生理反应(设A的每个个体在当天的其他时刻均不发生变化,不同个体的生理反应相互独立):
①直接死亡;②分裂为2个个体.
设第n天上午培养皿中A的个体数量为.规定,.
(1)求;
(2)求;
(3)已知,证明:随着n的增大而增大.
0
1
P
相关试卷
这是一份备考2024届高考数学一轮复习分层练习第十章计数原理概率随机变量及其分布第1讲两个计数原理,共4页。试卷主要包含了故选C,算盘是中国古代的一项重要发明等内容,欢迎下载使用。
这是一份备考2024届高考数学一轮复习分层练习第十章计数原理概率随机变量及其分布第5讲事件的相互独立性条件概率与全概率公式,共7页。试卷主要包含了已知P等内容,欢迎下载使用。
这是一份备考2024届高考数学一轮复习分层练习第十章计数原理概率随机变量及其分布第4讲随机事件与概率,共6页。试卷主要包含了故选B,6,P=0等内容,欢迎下载使用。