终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省邳州市新河中学2024-2025学年九年级上学期数学期中测试卷

    立即下载
    加入资料篮
    江苏省邳州市新河中学2024-2025学年九年级上学期数学期中测试卷第1页
    江苏省邳州市新河中学2024-2025学年九年级上学期数学期中测试卷第2页
    江苏省邳州市新河中学2024-2025学年九年级上学期数学期中测试卷第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省邳州市新河中学2024-2025学年九年级上学期数学期中测试卷

    展开

    这是一份江苏省邳州市新河中学2024-2025学年九年级上学期数学期中测试卷,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为( )
    A.10B.13C.8D.11
    2、(4分)如图,在RtΔABC中,∠C=90°,BC=6,AC=8,则AB的长度为( )
    A.7B.8C.9D.10
    3、(4分)根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是( )
    A.二次函数图像的对称轴是直线x=1;
    B.当x>0时,y<4;
    C.当x≤1时,函数值y是随着x的增大而增大;
    D.当y≥0时,x的取值范围是-1≤x≤3时.
    4、(4分)二次根式中的取值范围是( )
    A.B.C.D.
    5、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O,AB=3,△ABO的周长比△BOC的周长小1,则▱ABCD的周长是( )
    A.10B.12C.14D.16
    6、(4分)某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为( )
    A.10x-5(20-x)≥90B.10x-5(20-x)>90
    C.20×10-5x>90D.20×10-5x≥90
    7、(4分)如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为( )
    A.B.C.D.
    8、(4分)已知一次函数,y随着x的增大而减小,且,则它的大致图象是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系xOy中,已知抛物线的顶点在轴上,P,Q()是此抛物线上的两点.若存在实数,使得,且成立,则的取值范围是__________.
    10、(4分)如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.
    11、(4分)如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED.
    12、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
    13、(4分)若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.

    (1)当在点的右侧时,求证:四边形是平形四边形.
    (2)连结,当四边形恰为矩形时,求的长.
    (3)如图2,设,,记点与之间的距离为,直接写出的所有值.
    15、(8分)如图,中,.
    (1)用尺规作图法在上找一点,使得点到边、的距离相等(保留作图痕迹,不用写作法);
    (2)在(1)的条件下,若,,求的长.
    16、(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
    (1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
    (2)求原来的路线AC的长.
    17、(10分)解不等式组:.并把它的解集在数轴上表示出来
    18、(10分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
    (1)求点的坐标和所在直线的函数关系式
    (2)小明能否在比赛开始前到达体育馆
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,则m的取值范围是_____.
    20、(4分)如图,折叠矩形纸片,使点与点重合,折痕为,点落在处,若,则的长度为______.
    21、(4分)如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.
    22、(4分)如图,直线y=与y=x交于A(3,1)与x轴交于B(6,0),则不等式组0的解集为_____.
    23、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某市在今年对全市6000名八年级学生进行了一次视力抽样调查,并根据统计数据,制作了的统计表和如图所示统计图.
    请根据图表信息回答下列问题:
    (1)求抽样调查的人数;
    (2)______,______,______;
    (3)补全频数分布直方图;
    (4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?根据上述信息估计该市今年八年级的学生视力正常的学生大约有多少人?
    25、(10分)以四边形ABCD的边AB,AD为边分别向外侧作等边三角形ABF和等边三角形ADE,连接EB,FD,交点为G.
    (1)当四边形ABCD为正方形时,如图①,EB和FD的数量关系是 ;
    (2)当四边形ABCD为矩形时,如图②,EB和FD具有怎样的数量关系?请加以证明;
    (3)如图③,四边形ABCD由正方形到矩形再到一般平行四边形的变化过程中,EB和FD具有怎样的数量关系?请直接写出结论,无需证明.
    26、(12分)如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接
    (1)菱形的边长是________;
    (2)求直线的解析式;
    (3)动点从点出发,沿折线以2个单位长度/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.
    在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B
    考点:勾股定理.
    2、D
    【解析】
    根据勾股定理即可得到结论.
    【详解】
    在Rt△ABC中,∠C=90°,BC=6,AC=8,
    ∴AB=AC2+BC2=82+62=10,
    故选D.
    本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
    3、B
    【解析】
    试题分析:,
    所以x=1时,y取得最大值4,
    时,y<4,B错误
    故选B.
    考点:二次函数图像
    点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.
    4、D
    【解析】
    由二次根式有意义的条件得:被开方数为非负数可得答案.
    【详解】
    解:由有意义,则,解得:.
    故选D.
    本题考查的是二次根式有意义的条件,掌握被开方数为非负数是解题的关键.
    5、C
    【解析】
    根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长小1,则BC比AB大1,所以可以求出BC,进而求出周长.
    【详解】
    ∵△AOB的周长比△BOC的周长小1,∴BC﹣AB=1.
    ∵AB=3,∴BC=4,∴AB+BC=7,∴平行四边形的周长为2.
    故选C.
    本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.
    6、B
    【解析】
    据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.
    【详解】
    解:根据题意,得
    10x-5(20-x)>1.
    故选:B.
    本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.
    7、B
    【解析】
    先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.
    【详解】
    解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,
    ∴点P(x,y)的对应点P′的坐标为(-x,y+2).
    故选:B.
    本题考查了坐标与图形变化,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    8、A
    【解析】
    由y随着x的增大而减小,可知,根据k,b的取值范围即可确定一次函数所经过的象限.
    【详解】
    解:y随着x的增大而减小,

    一次函数的图像经过第一、二、四象限,不经过第三象限.
    故答案为:A
    本题考查了一次函数的图像与性质,确定k的取值范围是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    由抛物线顶点在x轴上,可得函数可以化成,即可化成完全平方公式,可得出,原函数可化为,将带入可解得的值用m表示,再将,且转化成PQ的长度比与之间的距离大可得出只含有m的不等式即可求解.
    【详解】
    解:∵抛物线顶点在x轴上,
    ∴函数可化为的形式,即可化成完全平方公式
    ∴可得:,
    ∴;
    令,可得,由题可知,
    解得:;
    ∴线段PQ的长度为,
    ∵,且,
    ∴,
    ∴,
    解得:;
    故答案为
    本题考查特殊二次函数解析式的特点,可以利用公式法求得a、b之间的关系,也可以利用顶点在x轴上的函数解析式的特点来得出a、b之间的关系;最后利用PQ的长度大于与之间的距离求解不等式,而不是简单的解不等式,这个是解题关键.
    10、1
    【解析】
    先利用正方形的性质得到∠ADC=90°,CD=AD=1 ,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠ADC=90°,CD=AD=1,
    ∵点E是正方形ABCD边AD的中点,
    ∴AE=DE= ,
    在Rt△CDE中,
    ∵AF⊥CE,
    ∴∠F=90°,
    ∵∠AEF=∠CED,
    ∴Rt△AEF∽Rt△CED,
    ∴,即
    ∴AF=1.
    故答案为1.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.
    11、AC=DF(或∠A=∠F或∠B=∠E)
    【解析】
    ∵BD=CE,
    ∴BD-CD=CE-CD,
    ∴BC=DE,
    ①条件是AC=DF时,
    在△ABC和△FED中,

    ∴△ABC≌△FED(SAS);
    ②当∠A=∠F时,
    ∴△ABC≌△FED(AAS);
    ③当∠B=∠E时,
    ∴△ABC≌△FED(ASA)
    故答案为AC=DF(或∠A=∠F或∠B=∠E).
    12、
    【解析】
    设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
    【详解】
    解:设雕像的下部高为x m,则题意得:,
    整理得:,
    解得: 或 (舍去);
    ∴它的下部应设计的高度为.
    故答案为:.
    本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
    13、
    【解析】
    先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.
    【详解】
    解:解不等式组 得:
    由有且仅有三个整数解即:3,2,1.
    则:
    解得:
    本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)FG=;(3)d=14或.
    【解析】
    (1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;
    (2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;
    (3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.
    【详解】
    (1)∵四边形APEF是菱形
    ∴AP∥EF,∠APF=∠EPF=∠APE,
    ∵四边形PBCD是菱形
    ∴PB∥CD,∠CDB=∠PDB=∠CDP
    ∴∠APE=∠PDC
    ∴∠FPE=∠BDP
    ∴PF∥BD,且AP∥EF
    ∴四边形四边形FGBP是平形四边形;
    (2)若四边形DFPG恰为矩形
    ∴PD=FG,PE=DE,EF=EG,
    ∴PD=2EF
    ∵四边形APEF是菱形,四边形PBCD是菱形
    ∴AP=EF,PB=PD
    ∴PB=2EF=2AP,且AB=10
    ∴FG=PB=.
    (3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,
    ∵FE=2EG,
    ∴PB=FG=3EG,EF=AP=2EG
    ∵AB=10
    ∴AP+PB=5EG=10
    ∴EG=2,
    ∴AP=4,PB=6=BC,
    ∵∠ABC=120°,
    ∴∠CBH=60°,且CH⊥AB
    ∴BH=BC=3,CH=BH=3
    ∴AH=13
    ∴AC==14
    若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H
    ∵FE=2EG,
    ∴PB=FG=EG,EF=AP=2EG
    ∵AB=10,
    ∴3EG=10
    ∴EG=
    ∴BP=BC=
    ∵∠ABC=120°,
    ∴∠CBH=60°,且CH⊥AB
    ∴BH=BC=,CH=BH=
    ∴AH=
    ∴AC=
    综上所述:d=14或.
    本题考查菱形的性质、平行线的性质、平行四边形的判定及勾股定理,解题的关键是掌握菱形的性质、平行线的性质、平行四边形的判定及勾股定理的计算.
    15、(1)见解析;(2)
    【解析】
    (1)根据题意作∠CAB的角平分线与BC的交点即为所求;
    (2)根据含30°的直角三角形的性质及勾股定理即可求解.
    【详解】
    (1)
    (2)由(1)可知为的角平分线




    在中,由勾股定理得:

    解得:∴
    此题主要考查直角三角形的性质,解题的关键是熟知勾股定理的应用.
    16、(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.
    【解析】
    (1)根据勾股定理的逆定理解答即可;
    (2)根据勾股定理解答即可
    【详解】
    (1)是,
    理由是:在△CHB中,
    ∵CH2+BH2=(2.4)2+(1.8)2=9
    BC2=9
    ∴CH2+BH2=BC2
    ∴CH⊥AB,
    所以CH是从村庄C到河边的最近路
    (2)设AC=x
    在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4
    由勾股定理得:AC2=AH2+CH2
    ∴x2=(x﹣1.8)2+(2.4)2
    解这个方程,得x=2.5,
    答:原来的路线AC的长为2.5千米.
    此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.
    17、1<x<4,数轴表示见解析.
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①得:x>1;
    解不等式②得:x<4,
    所以不等式组的解集为:1<x<4,
    解集在数轴上表示为:
    此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    18、 (1) 点B的坐标为(15,900),直线AB的函数关系式为:.
    (2)小明能在比赛开始前到达体育馆.
    【解析】
    (1)从图象可以看出:父子俩从出发到相遇时花费了15分钟,设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分,则路程和为1,即可列出方程求出小明的速度,再根据A,B两点坐标用待定系数法确定函数关系式;(2)直接利用一次函数的性质即可求出小明的父亲从出发到体育馆花费的时间,经过比较即可得出是否能赶上.
    【详解】
    (1)从图象可以看出:父子俩从出发到相遇时花费了15分钟
    设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分
    依题意得:15x+45x=1.
    解得:x=2.
    所以两人相遇处离体育馆的距离为
    2×15=900米.
    所以点B的坐标为(15,900).
    设直线AB的函数关系式为s=kt+b(k≠0).
    由题意,直线AB经过点A(0,1)、B(15,900)
    得:解之,得
    ∴直线AB的函数关系式为:.
    (2)在中,令S=0,得.
    解得:t=3.
    即小明的父亲从出发到体育馆花费的时间为3分钟,因而小明取票的时间也为3分钟.
    ∵3

    相关试卷

    江苏省启东市天汾初级中学2024-2025学年九年级上学期数学期中测试卷:

    这是一份江苏省启东市天汾初级中学2024-2025学年九年级上学期数学期中测试卷,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    +江苏省无锡市江阴市澄西中学2024-2025学年九年级上学期数学期中测试卷+:

    这是一份+江苏省无锡市江阴市澄西中学2024-2025学年九年级上学期数学期中测试卷+,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2019-2020学年江苏省徐州市邳州市九年级上学期数学期中试题及答案:

    这是一份2019-2020学年江苏省徐州市邳州市九年级上学期数学期中试题及答案,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map