开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023-2024学年山东省淄博市桓台县(五四制)七年级(上)期中数学试卷(解析版)

    2023-2024学年山东省淄博市桓台县(五四制)七年级(上)期中数学试卷(解析版)第1页
    2023-2024学年山东省淄博市桓台县(五四制)七年级(上)期中数学试卷(解析版)第2页
    2023-2024学年山东省淄博市桓台县(五四制)七年级(上)期中数学试卷(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年山东省淄博市桓台县(五四制)七年级(上)期中数学试卷(解析版)

    展开

    这是一份2023-2024学年山东省淄博市桓台县(五四制)七年级(上)期中数学试卷(解析版),共14页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。
    一、选择题.
    1. 下列各组线段能构成直角三角形的一组是( )
    A. 30,40,50B. 7,12,13C. 5,9,12D. 3,4,6
    【答案】A
    【解析】A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确,符合题意;
    B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误,不符合题意;
    C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误,不符合题意;
    D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误,不符合题意.
    故选:A.
    2. 下列大学的校徽图案是轴对称图形的是( ).
    A. B.
    C. D.
    【答案】B
    【解析】A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    3. 如图,是的中线,,,的周长为10,则的周长为( )
    A. 8B. 9C. 10D. 11
    【答案】D
    【解析】∵的周长为10,∴,
    ∵,∴,
    ∵是的中线,∴.∴,
    ∵,∴的周长.
    故选:D.
    4. 嘉嘉和淇淇到学校的直线距离分别是和,那么嘉嘉和淇淇的直线距离不可能是( )
    A. 1B. 3C. 6D. 8
    【答案】A
    【解析】嘉嘉和淇淇到学校的直线距离分别是km和km,
    两人最近距离为: (km),
    故嘉嘉和淇淇的直线距离不可能是km.
    故选:A.
    5. 如图,要测量池塘两岸相对的两点,间的距离,小明在池塘外取的垂线上的点,,使.再画出的垂线,使与,在一条直线上,这时测得的长就是的长.依据是( )
    A. B. C. D.
    【答案】C
    【解析】由题意得:,,,

    小明用到是两角及这两角的夹边对应相等即这一方法.
    故选:.
    6. 如图,在,,,沿过点A的直线折叠,使点B落在边上的点D处,再次折叠,使点C与点D重合,折痕交于点E,则的长度为( )
    A. B. C. D.
    【答案】B
    【解析】∵沿过点A的直线将纸片折叠,使点B落在边上的点D处,
    ∴,,
    ∵折叠纸片,使点C与点D重合,∴,
    ∵,∴,∴,
    ∴,∴,
    设,则,∴,解得,
    即.
    故选:B.
    7. 如图,中,,请依据图中的作图痕迹,得的度数为( )
    A. B. C. D.
    【答案】A
    【解析】由作图可知,,是的平分线,即,
    ∴,,∴,
    ∴,∴.
    故选:A.
    8. 如图,一圆柱高8cm,底面周长是12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是( )
    A. 20cmB. 24cmC. 14cmD. 10cm
    【答案】D
    【解析】如图,将圆柱展开:
    ∵圆柱高8cm,底面周长为12cm, ∴BC=8cm,AC=6cm,
    根据勾股定理得:AB==10(cm),即爬行的最短路程是10cm.
    故选:D.
    9. 如图,在中,平分交于点D,过点D作交于点E,若,则大小为( )
    A. B. C. D.
    【答案】D
    【解析】∵,∴,
    ∵平分交于点,∴,
    ∵,∴.
    故选:D.
    10. 如图,四边形中,,点关于的对称点恰好落在上,若,则的度数为( )
    A. B. C. D.
    【答案】D
    【解析】如图,连接,,过A作AE⊥CD于E,
    ∵点B关于AC的对称点恰好落在CD上,∴AC垂直平分,
    ∴AB=,∴∠BAC=∠,
    ∵AB=AD,∴AD=,
    又∵AE⊥CD,∴∠DAE=∠,∴∠CAE=∠BAD=α,
    又∵==90°,∴四边形中, =180°−α,
    ∴=−=180°−α−90°=90°−α,
    ∴∠ACB==90°−α.
    故选:D.
    二、填空题.
    11. 如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为 _____.
    【答案】
    【解析】如图,在和中,,,
    ,.
    12. 如图,的周长为,根据图中尺规作图的痕迹,直线分别与,交于D,E两点,若,则的周长为______.
    【答案】
    【解析】由作图可知,垂直平分线段,∴,,
    ∵,,∴,
    ∴的周长.
    13. 在中,,则______.
    【答案】4
    【解析】,,,,
    .
    14. 在中,,,,,则的长为______.
    【答案】
    【解析】∵在中,,,,
    ∴,
    ∵,,∴,
    ∴.
    15. 将宽的长方形纸条折叠成如图所示的形状,为折痕,则正方形的面积为______.
    【答案】
    【解析】如图所示,
    作于点,由题意得,,
    ,,
    由折叠性质得:,即,
    ,,
    是等边三角形,,
    在中,,,,
    正方形的面积为:.
    三、解答题.
    16. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你分别在甲、乙、丙三个图中涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形.
    解:如图所示:
    17. 如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得,,.
    (1)求证:;
    (2)若,,求的长度.
    解:(1)∵,∴,
    在与中,,∴.
    (2)∵,∴,∴,
    ∴,
    ∵,,∴.
    18. 小明利用一根长的竿子来测量路灯的高度.他的方法是这样的:在路灯前选一点,使m,并测得,然后把竖直的竿子在的延长线上移动,使,此时量得.根据这些数据,小明计算出了路灯的高度.你能计算出路灯高度吗?
    解:能.
    ∵,,,
    ∴,
    在和中,,∴,
    ∴,
    ∵,,∴.
    答:路灯的高度是.
    19. 已知:线段,.
    求作:,使,斜边,.(保留作图痕迹,不写画法)
    画图:
    解:如图所示,
    作法:(1)作射线;
    (2)在上截取;
    (3)过点作;
    (4)以点为圆心,为半径画弧,交于点;
    (5)连接.
    即为所求.
    20. 如图,一块草坪的形状为四边形,其中∠,.求这块草坪的面积.
    解:连接,
    ,在直角中,由勾股定理得,
    ,,
    又,
    在中,,
    ,即是直角三角形,

    答:该草坪的面积为.
    21. 如图,海中有一小岛P,它的周围海里内有暗礁,渔船跟踪鱼群由西向东航行,在M处测得小岛P在北偏东方向上,航行海里到N处,这时测得小岛P在北偏东方向上.
    (1)求N点与小岛P的距离;
    (2)如果渔船不改变航线继续向东航行,是否有触礁危险.并说明理由.
    解:(1)如图,过点P作于D,
    由题意得,,,
    ∴,
    ∵,
    ∴,
    答:N点与小岛P的距离是海里.
    (2)没有触礁危险,理由如下:
    ∵,∴,
    由勾股定理得,,
    ∵,∴,∴没有触礁危险.
    22. 如图,在四边形的草坪中,,点分别在上,数学兴趣小组在测量中发现,正准备继续测量与的长度时,小亮则说:不用测量了,.小亮的说法是否正确?请说明理由.
    解:小亮的说法正确,理由如下:
    连接,
    在与中,,∴,
    ∴,
    在与中,,∴
    ∴,
    即:小亮的说法正确.
    23. 如图,在中,,点E为线段的中点,点F在边上,连接,沿将折叠得到.
    (1)如图1,当点P落在上时,求的度数;
    (2)如图2,当时,求的度数.
    解:(1)由折叠得,
    ∵,∴,∴,
    ∵,
    ∴.
    (2)∵,∴,
    由折叠得,
    ∴,
    在中,,
    ∴,
    在中,,
    ∴.

    相关试卷

    2024-2025学年山东省淄博市桓台县八年级(上)期中模拟数学试卷(解析版):

    这是一份2024-2025学年山东省淄博市桓台县八年级(上)期中模拟数学试卷(解析版),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省淄博市桓台县2024~2025学年八年级(上)期中数学试卷(含答案):

    这是一份山东省淄博市桓台县2024~2025学年八年级(上)期中数学试卷(含答案),共8页。

    山东省淄博市桓台县(五四制)2023-2024学年七年级上学期期中考试数学试卷(含答案):

    这是一份山东省淄博市桓台县(五四制)2023-2024学年七年级上学期期中考试数学试卷(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map