所属成套资源:北京专用【黄金 8 卷】备战 2025 高考数学模拟卷
- 备战2025年高考数学北京模拟卷一 试卷 0 次下载
- 备战2025年高考数学北京模拟卷三 试卷 0 次下载
- 备战2025年高考数学北京模拟卷四 试卷 0 次下载
备战2025年高考数学北京模拟卷二
展开
这是一份备战2025年高考数学北京模拟卷二,文件包含黄金卷02北京专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷02北京专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx、黄金卷02北京专用-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
(考试时间:120分钟 试卷满分:150分)
第I卷(选择题)
一、单项选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知全集,集合,则( )
A.B.C.D.
2.在复平面内,复数对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.若向量满足,,且,则与的夹角为( )
A.B.C.D.
4.下列函数中,既是奇函数又在区间上单调递增的是( )
A.B.C.D.
5.已知二项式的展开式中的系数是( )
A.B.C.D.
6.已知抛物线的焦点为F,过F且斜率为的直线与直线交于点A,点M在抛物线上,且满足MA=MF,则( )
A.1B.C.2D.
7.在中,,则( )
A.B.C.D.
8.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
9.十字歇山顶是中国古代建筑屋顶的经典样式之一,图1中的故宫角楼的顶部即为十字歇山顶.其上部可视为由两个相同的直三棱柱交叠而成的几何体(图2),这两个三棱柱有一个公共侧面.在底面中,若,则该几何体的体积为( )
A.B.C.27D.
10.已知是数列的前项和,若,数列的首项,,则( )
A.B.
C.D.
第II卷(非选择题)
二、填空题:本题共5小题,每小题5分,共25分。
11.已知是定义在上的偶函数,且当时,,则 .
12.已知双曲线C的焦点为和,离心率为,则C的方程为 .
13.在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆交于点(不在坐标轴上).过点作轴的垂线,垂足为.若记为点到直线的距离,则的最大值为 ,此时的一个取值为 .
14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为 ,且斛量器的高为,则斗量器的高为 ,升量器的高为 .
15.已知函数,给出下列四个结论:
①对任意实数,函数总存在零点;
②存在实数,使得函数恒大于0;
③对任意实数,函数一定存在最小值;
④存在实数,使得函数在上始终单调递减.
其中所有正确结论的序号是 .
三、解答题:本题共6小题,共85分,解答应写出必要的文字说明、证明过程及验算步骤。
16.(13分)
在中,,.
(1)求的大小;
(2)是的中点.从条件①,条件②,条件③中选择一个作为已知,使存在且唯一确定,求的面积;
注:如果选择多个条件分别解答,按第一个个解答计分.
17.(14分)
如图,在四棱锥中,底面是菱形且,是边长为的等边三角形,,,分别为,,的中点,与交于点.
(1)证明:平面;
(2)若,求平面与平面所成锐二面角的余弦值.
18.(13分)
2023世界人工智能大会拟定于七月初在我国召开,我国在人工智能芯片、医疗、自动驾驶等方面都取得了很多成就.为普及人工智能相关知识,红星中学组织学生参加“人工智能”知识竞赛,竞赛分为理论知识竞赛、实践能力竞赛两个部分,两部分的成绩分为三档,分别为基础、中等、优异.现从参加活动的学生中随机选择20位,统计其两部分成绩,成绩统计人数如表:
(1)若从这20位参加竞赛的学生中随机抽取一位,抽到理论或实践至少一项成绩为优异的学生概率为.求,的值;
(2)在(1)的前提下,用样本估计总体,从全市理论成绩为优异的学生中,随机抽取人,求至少有一个人实践能力的成绩为优异的概率;
(3)若基础、中等和优异对应得分为分、分和分,要使参赛学生理论成绩的方差最小,写出的值.(直接写出答案)
19.(15分)
设椭圆的左、右顶点分别为,右焦点,.
(1)求椭圆方程及其离心率;
(2)已知点是椭圆上一动点(不与顶点重合),直线交轴于点,若的面积是面积的倍,求直线的方程.
20.(15分)
已知函数.
(1)求曲线在点处的切线方程;
(2)求的单调区间;
(3)设,若对于恒成立,求的最小值.
21.(15分)
设自然数,由个不同正整数构成集合,若集合的每一个非空子集所含元素的和构成新的集合,记为集合元素的个数
(1)已知集合,集合,分别求解.
(2)对于集合,若取得最大值,则称该集合为“极异集合”
①求的最大值(无需证明).
②已知集合是极异集合,记求证:数列的前项和.
实践 理论
基础
中等
优异
基础
中等
优异
相关试卷
这是一份备战2024高考二模模拟训练卷05-备战2024年高考数学模考适应模拟卷(新高考专用),文件包含备战2024高考二模模拟训练卷05原卷版docx、备战2024高考二模模拟训练卷05解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份备战2024高考二模模拟训练卷04-备战2024年高考数学模考适应模拟卷(新高考专用),文件包含备战2024高考二模模拟训练卷04原卷版docx、备战2024高考二模模拟训练卷04解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份备战2024高考二模模拟训练卷03-备战2024年高考数学模考适应模拟卷(新高考专用),文件包含备战2024高考二模模拟训练卷03原卷版docx、备战2024高考二模模拟训练卷03解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。