所属成套资源:2025年中考数学一轮复习讲与 考点精析+真题精讲+题型突破+专题精练(2份,原卷版+解析版)
- 2025年中考数学一轮复习讲与练第7章 图形的变化(基础卷)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第7章 图形的变化(提升卷)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第七章第一讲 视图与投影(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第七章第二讲 图形的对称、平移、旋转与位似(考点精析+真题精讲)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第七章第二讲 图形的对称、平移、旋转与位似(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
2025年中考数学一轮复习讲与练第七章第一讲 视图与投影(考点精析+真题精讲)(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习讲与练第七章第一讲 视图与投影(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第7章第一讲视图与投影考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第7章第一讲视图与投影考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
第1讲视图与投影
本单元内容以考查几何体的三视图和正方体的展开图为主,年年都会考查,是广大考生的得分点,分值为3分,预计2024年各地中考还将出现,并且在选择题出现的可能性较大,由几何体得三视图,或由三视困还原几何体、正方体的展开图、最小距离问题等,题目简单,容易得分.
→➊考点精析←
→➋真题精讲←
考向一投影
考向二三视图
第1讲视图与投影
→➊考点精析←
一、投影
1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.
2.平行投影、中心投影、正投影
(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.
【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.
(2)平行投影:投射线相互平行的投影称为平行投影.
【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.
(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.
二、视图
1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.
2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.
3)俯视图:从上面看得到的视图叫做俯视图.
【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.
3.三视图的画法
1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.
2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.
三、几何体的展开与折叠
1.常见几何体的展开图
2.正方体的展开图
正方体有11种展开图,分为四类:
第一类,中间四连方,两侧各有一个,共6种,如下图:
第二类,中间三连方,两侧各有一、二个,共3种,如下图:
第三类,中间二连方,两侧各有二个,只有1种,如图10;
第四类,两排各有三个,也只有1种,如图11.
→➋真题精讲←
考向一视图
1.(2023·湖北鄂州·统考中考真题)下列立体图形中,主视图是圆的是( )
A.B.C.D.
【答案】D
【分析】分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.
【详解】解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;
圆柱的主视图是矩形,不符合题意;
圆锥的主视图是等腰三角形,不符合题意;
球体的主视图是圆,符合题意;
故选:D.
【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
2.(2023·吉林长春·统考中考真题)下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )
A.面①B.面②C.面⑤D.面⑥
【答案】C
【分析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.
【详解】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,
故选:C.
【点睛】本题考查了长方体的表面展开图,熟练掌握基本几何体的展开图是解题的关键.
3.(2023·内蒙古·统考中考真题)几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是( )
A. B. C. D.
【答案】D
【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.
【详解】解:根据俯视图可知,这个几何体中:主视图有三列:左边一列1个,中间一列2个,右边一列2个,
所以该几何体的主视图是
故选:D.
【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,熟练掌握三视图的判断方法是解题关键.
4.(2023·全国·统考中考真题)图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是( )
A. B. C. D.
【答案】A
【分析】主视图是从几何体正面观察到的视图.
【详解】解:领奖台从正面看,是由三个矩形组成的.三个矩形,右边最低,中间最高,
故选:A.
【点睛】本题考查主视图,掌握三视图的特征是解题关键.
5.(2023·黑龙江绥化·统考中考真题)如图是一个正方体,被切去一角,则其左视图是( )
A.B. C. D.
【答案】B
【分析】根据左视图的意义判断即可.
【详解】根据题意,该几何体的左视图为:
,
故选:B.
【点睛】本题考查了三视图的画法,熟练掌握三视图的空间意义是解题的关键.
6.(2023·黑龙江齐齐哈尔·统考中考真题)如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是( )
A.2B.3C.4D.5
【答案】C
【分析】首先确定该几何体左视图的小正方形数量,然后求解面积即可.
【详解】解:该几何体左视图分上下两层,其中下层有3个小正方形,上层中间有1个正方形,共计4个小正方形,
∵小正方体的棱长为1,
∴该几何体左视图的面积为4,
故选:C.
【点睛】本题考查简单组合体的三视图,理解左视图即为从左边看到的图形是解题关键.
7.(2023·河南·统考中考真题)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )
A.主视图与左视图相同B.主视图与俯视图相同
C.左视图与俯视图相同D.三种视图都相同
【答案】A
【分析】直接利用已知几何体分别得出三视图进而分析得出答案.
【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.
故选:A.
【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.
8.(2023·黑龙江·统考中考真题)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为( )
A.4B.5C.6D.7
【答案】B
【分析】在“俯视打地基”的前提下,结合左视图知俯视图上一行三个小正方体的上方(第2层)至少还有1个正方体,据此可得答案.
【详解】解:由俯视图与左视图知,该几何体所需小正方体个数最少分布情况如下图所示:
所以组成该几何体所需小正方体的个数最少为5,
故选:B.
【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握口诀“俯视打地基,主视疯狂盖,左视拆违章”.
9.(2023·辽宁大连·统考中考真题)如图所示的几何体中,主视图是( )
A. B.
C. D.
【答案】B
【分析】根据主视图是从正面看得到的图形解答即可.
【详解】解:从正面看看到的是
,
故选:B.
【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键.
10.(2023·山东·统考中考真题)一个几何体的三视图如下,则这个几何体的表面积是( )
A.B.C.D.
【答案】B
【分析】先根据三视图还原出几何体,再利用圆锥的侧面积公式和圆柱的侧面积公式计算即可.
【详解】根据三视图可知,该几何体上面是底面直径为6,母线为4的圆锥,下面是底面直径为6,高为4的圆柱,该几何体的表面积为:
.
故选:B.
【点睛】本题主要考查了简单几何体的三视图以及圆锥的侧面积公式和圆柱的侧面积公式,根据三视图还原出几何体是解决问题的关键.
11.(2023·湖北荆州·统考中考真题)观察如图所示的几何体,下列关于其三视图的说法正确的是( )
A.主视图既是中心对称图形,又是轴对称图形
B.左视图既是中心对称图形,又是轴对称图形
C.俯视图既是中心对称图形,又是轴对称图形
D.主视图、左视图、俯视图都是中心对称图形
【答案】C
【分析】先判断该几何体的三视图,再根据轴对称和中心对称图形定义逐项判断三视图,即可求出答案.
【详解】解:A选项:主视图是上下两个等腰三角形,不是中心对称图形,是轴对称图形,故不符合题意;
B选项:左视图是上下两个等腰三角形,不是中心对称图形,是轴对称图形,故不符合题意;
C选项:俯视图是圆(带圆心),既是中心对称图形,又是轴对称图形,故符合题意;
D选项:由A和B选项可知,主视图和左视图都不是中心对称图形,故不符合题意.
故选:C.
【点睛】本题考查了简单几何体的三视图、轴对称图形和中心对称图形,解题的关键在于掌握轴对称和中心对称的定义. 如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称是指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.
12.(2023·山东聊城·统考中考真题)如图所示几何体的主视图是( )
A. B. C. D.
【答案】D
【分析】从正面看到的平面图形是主视图,根据主视图的含义可得答案.
【详解】解:如图所示的几何体的主视图如下:
故选:D.
【点睛】此题主要考查了三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.
13.(2023·湖南永州·统考中考真题)下列几何体中,其三视图的主视图和左视图都为三角形的是( )
A.B.
C. D.
【答案】D
【分析】根据三视图的意义判断即可.
【详解】A. 主视图和左视图都为长方形,不符合题意;
B. 主视图和左视图都为长方形,不符合题意;
C. 主视图和左视图都为长方形,不符合题意;
D. 主视图和左视图都为三角形,符合题意,
故选:D.
【点睛】本题考查了几何体的三视图,熟练掌握三视图的意义是解题的关键.
14.(2023·山东烟台·统考中考真题)如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )
A. B. C. D.
【答案】A
【分析】根据俯视图的定义,即可进行解答.
【详解】解:根据题意可得:从该几何体正上方看,棱的投影为点E,棱的投影为线段,棱的投影为线段,棱的投影为正方形的对角线,
∴该几何体的俯视图为:
,
故选:A.
【点睛】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.
15.(2023·四川遂宁·统考中考真题)生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是( )
A.正方体B.圆锥C.圆柱D.四棱锥
【答案】A
【分析】根据几何体的三视图形状判定即可.
【详解】A. 正方体的三视图都是正方形,符合题意;
B.圆锥的主视图是等腰三角形,左视图是等腰三角形,俯视图是圆(带圆心),不符合题意;
C. 圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;
D. 四棱锥主视图是三角形,左视图是三角形,俯视图是四边形,不符合题意;
故选:A.
【点睛】本题考查了几何体的三视图,熟练掌握三视图是解题的关键.
考向二投影
16.(2020·贵州贵阳市·中考真题)在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )
A.B.C.D.
【答案】D
【分析】根据太阳光下的影子的特点:(1)同一时刻,太阳光下的影子都在同一方向;(2)太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.
【详解】选项A、B中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A、B错误
选项C中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C错误
选项D中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D正确故选:D.
【点睛】本题考查了太阳光下的影子的特点,掌握太阳光下的影子的特点是解题关键.
17.(2020·广西南宁市·中考模拟)把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )
A.B.C.D.
【答案】A
【解析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.
把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.
考点:平行投影.
18.(2020·湖南湘潭市·中考模拟)如图,从左面看圆柱,则图中圆柱的投影是( )
A.圆B.矩形C.梯形D.圆柱
【答案】B
【解析】如图所示圆柱从左面看是矩形,故选B.
19.(2020·安徽淮南市·九年级其他模拟)下列现象不属于投影的是( )
A.皮影B.素描画C.手影D.树影
【答案】B
【分析】根据投影的概念,皮影、树影、手影都是由光线照射形成的,都是投影,而素描画不满足,不是投影,即可得到答案.
【详解】根据平行投影的概念可知,素描画不是光线照射形成的,故选:B.
【点睛】本题考查了投影的概念,掌握知识点是解题关键.
20.(2020·吉林长春市·)小华家客厅有一张直径为高为的圆桌有一盏灯到地面垂直距离为圆桌的影子为,则点到点的距离为_______.
【答案】4
【分析】根据相似三角形的判定和性质即可得到结论.
【详解】解:∵AB∥CD,∴△ABE∽△CDE,∴=.
∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.
【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.
21.(2020·深圳市龙岗区南湾街道沙湾中学九年级其他模拟)如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.
【答案】4
【分析】如图,∠CPD=90°,QC=2m,QD=8m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.
【详解】解:如图,∠CPD=90°,QC=2m,QD=8m,
∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,
而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴即,
∴PQ=4,即旗杆的高度为4m.故答案为4.
【点睛】本题主要考查了相似三角形的判定和性质的应用,也考查了平行投影,找准相似三角形是解答此题的关键.
22.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片,此时各叶片影子在点M右侧成线段,测得,垂直于地面的木棒与影子的比为2∶3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.
【答案】 10
【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD于点J,过点B作BI⊥OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据,求出OM的长度,证明,得出,,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.
【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD于点J,过点B作BI⊥OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,
∵,∴点H是CD的中点,
∵,∴,
∴,
又∵由题意可知:,∴,解得,
∴点O、M之间的距离等于,
∵BI⊥OJ,∴,
∵由题意可知:,
又∵,∴,
∴,∴,∴,,
∵,∴四边形IHDJ是平行四边形,∴,
∵,∴,,,
∵在中,由勾股定理得:,
∴,∴,
∴,
∴叶片外端离地面的最大高度等于,故答案为:10,.
【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.
23.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=_________m.
【答案】9.88
【分析】根据平行投影得AC∥DE,可得∠ACB=∠DFE,证明Rt△ABC∽△Rt△DEF,然后利用相似三角形的性质即可求解.
【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.
∴AC∥DE,∴∠ACB=∠DFE,
∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽△Rt△DEF,
∴,即,解得AB=9.88,
∴旗杆的高度为9.88m.故答案为:9.88.
【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt△ABC∽△Rt△DEF是解题的关键.几何体
立体图形
表面展开图
侧面展开图
圆柱
圆锥
三棱柱
相关试卷
这是一份2025年中考数学一轮复习讲与练第八章第一讲 统计(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第8章第一讲统计考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第8章第一讲统计考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第七章第二讲 图形的对称、平移、旋转与位似(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第7章第二讲图形的对称平移旋转与位似含图形的运动与坐标考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第7章第二讲图形的对称平移旋转与位似含图形的运动与坐标考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第六章第一讲 圆的基本性质(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第6章第一讲圆的基本性质考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第6章第一讲圆的基本性质考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。