所属成套资源:【讲通练透】2025年新高考数学一轮复习(新教材,含2024高考真题)
- 重难点突破06 弦长问题及长度和、差、商、积问题(七大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 2 次下载
- 重难点突破07 圆锥曲线三角形面积与四边形面积题型归类(七大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 2 次下载
- 重难点突破09 一类与斜率和、差、商、积问题的探究(四大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 2 次下载
- 重难点突破10 圆锥曲线中的向量与共线问题(五大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 2 次下载
- 重难点突破11 圆锥曲线中的探索性与综合性问题(七大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 2 次下载
重难点突破08 圆锥曲线的垂直弦问题(八大题型)-2025年高考数学一轮复习讲练测(新教材新高考)
展开
这是一份重难点突破08 圆锥曲线的垂直弦问题(八大题型)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含重难点突破08圆锥曲线的垂直弦问题八大题型原卷版docx、重难点突破08圆锥曲线的垂直弦问题八大题型解析版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
\l "_Tc176596140" 02 题型归纳与总结 PAGEREF _Tc176596140 \h 3
\l "_Tc176596141" 题型一:椭圆内接直角三角形的斜边必过定点 PAGEREF _Tc176596141 \h 3
\l "_Tc176596142" 题型二:双曲线内接直角三角形的斜边必过定点 PAGEREF _Tc176596142 \h 4
\l "_Tc176596143" 题型三:抛物线内接直角三角形的斜边必过定点 PAGEREF _Tc176596143 \h 5
\l "_Tc176596144" 题型四:椭圆两条互相垂直的弦中点所在直线过定点 PAGEREF _Tc176596144 \h 6
\l "_Tc176596145" 题型五:双曲线两条互相垂直的弦中点所在直线过定点 PAGEREF _Tc176596145 \h 7
\l "_Tc176596146" 题型六:抛物线两条互相垂直的弦中点所在直线过定点 PAGEREF _Tc176596146 \h 8
\l "_Tc176596147" 题型七:内接直角三角形范围与最值问题 PAGEREF _Tc176596147 \h 10
\l "_Tc176596148" 题型八:两条互相垂直的弦中点范围与最值问题 PAGEREF _Tc176596148 \h 11
\l "_Tc176596149" 03 过关测试 PAGEREF _Tc176596149 \h 12
1、过椭圆的右焦点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.
2、过椭圆的长轴上任意一点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.
3、过椭圆的短轴上任意一点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.
4、过椭圆内的任意一点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.
5、以为直角定点的椭圆内接直角三角形的斜边必过定点
6、以上顶点为直角顶点的椭圆内接直角三角形的斜边必过定点,且定点在轴上.
7、以右顶点为直角顶点的椭圆内接直角三角形的斜边必过定点,且定点在轴上.
8、以为直角定点的抛物线内接直角三角形的斜边必过定点,
9、以为直角定点的双曲线内接直角三角形的斜边必过定点
题型一:椭圆内接直角三角形的斜边必过定点
【典例1-1】已知椭圆的左右焦点分别,若______.
请把以下两个条件中任选一个补充在横线上作答(若都选择,则按照第一个解答给分)
①四点中,恰有三点在椭圆C上.
②椭圆C经过,轴,且.
(1)求椭圆C的方程;
(2)设点D为椭圆C的上顶点,过点D作两条互相垂直的直线分别交椭圆于A、B两点,过D作直线AB的垂线垂足为M,判断y轴上是否存在定点N,使得为定值?请证明你的结论.
【典例1-2】如图所示,、分别为椭圆的左、右顶点,离心率为.
(1)求椭圆的标准方程;
(2)过点作两条互相垂直的直线、与椭圆交于、两点,证明直线过定点,并求面积的最大值.
【变式1-1】已知椭圆的上、下顶点分别为,,上焦点为,,.
(1)求椭圆的方程;
(2)过点作两条互相垂直的弦交于,两点.当点变化时,直线是否过定点?并说明理由.
【变式1-2】已知椭圆:()的离心率,且过点.
(1)求椭圆的方程;
(2)过点作椭圆的两条互相垂直的弦、,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
题型二:双曲线内接直角三角形的斜边必过定点
【典例2-1】在平面直角坐标系xOy中,动点Р与定点F(2,0)的距离和它到定直线l:的距离之比是常数,记P的轨迹为曲线E.
(1)求曲线E的方程;
(2)设过点A(,0)两条互相垂直的直线分别与曲线E交于点M,N(异于点A),求证:直线MN过定点.
【典例2-2】已知双曲线,经过双曲线上的点作互相垂直的直线AM、AN分别交双曲线于M、N两点.设线段AM、AN的中点分别为B、C,直线OB、OC(O为坐标原点)的斜率都存在且它们的乘积为.
(1)求双曲线的方程;
(2)过点A作(D为垂足),请问:是否存在定点E,使得为定值?若存在,求出点E的坐标;若不存在,请说明理由.
【变式2-1】已知双曲线C:经过点,且双曲线C的右顶点到一条渐近线的距离为.
(1)求双曲线C的方程;
(2)过点P分别作两条互相垂直的直线PA,PB与双曲线C交于A,B两点(A,B两点均与点P不重合),设直线AB:,试求和之间满足的关系式.
题型三:抛物线内接直角三角形的斜边必过定点
【典例3-1】已知过抛物线的焦点,斜率为的直线l交抛物线于A,B两点,且.
(1)求抛物线E的方程;
(2)设过点且互相垂直的两条直线与抛物线E分别交于点M,N,证明:直线过定点.
【典例3-2】已知抛物线C:与椭圆E:的一个交点为,且E的离心率.
(1)求抛物线C和椭圆E的方程;
(2)过点A作两条互相垂直的直线AP,AQ,与C的另一交点分别为P,Q,求证:直线PQ过定点.
【变式3-1】已知抛物线的焦点关于直线的对称点恰在抛物线的准线上.
(1)求抛物线的方程;
(2)是抛物线上横坐标为的点,过点作互相垂直的两条直线分别交抛物线于两点,证明直线恒经过某一定点,并求出该定点的坐标.
【变式3-2】(2024·云南昆明·模拟预测)已知抛物线,O是坐标原点,F是C的焦点,M是C上一点,,.
(1)求抛物线C的标准方程;
(2)设点在C上,过Q作两条互相垂直的直线,分别交C于A,B两点(异于Q点).证明:直线恒过定点.
题型四:椭圆两条互相垂直的弦中点所在直线过定点
【典例4-1】已知椭圆的左右焦点分别为,抛物线与椭圆有相同的焦点,点P为抛物线与椭圆在第一象限的交点,且.
(1)求椭圆的方程;
(2)过F作两条斜率不为0且互相垂直的直线分别交椭圆于A,B和C,D,线段AB的中点为M,线段CD的中点为N,证明:直线过定点,并求出该定点的坐标.
【典例4-2】已知椭圆过点,且长轴长为4.
(1)求的标准方程;
(2)过点作两条互相垂直的弦,设弦的中点分别为.证明;直线必过定点.
【变式4-1】已知定点,关于原点O对称的动点P,Q到定直线l:的距离分别为,,且,记P的轨迹为曲线C.
(1)求曲线C的方程,并说明C是什么曲线;
(2)当时,过点F的两条互相垂直的直线与曲线C分别交于A,B,C,D两点,弦AB,CD的中点分别为M,N,求证:直线MN过定点;
(3)在(2)条件下,当M,N,F三点可构成三角形时,求的取值范围.
【变式4-2】(2024·高三·天津河西·期末)已知椭圆上任意一点到椭圆两个焦点的距离之和为,且离心率为.
(1)求椭圆的标准方程;
(2)设为的左顶点,过点作两条互相垂直的直线分别与交于两点,证明:直线经过定点,并求这个定点的坐标.
题型五:双曲线两条互相垂直的弦中点所在直线过定点
【典例5-1】(2024·贵州·模拟预测)已知双曲线的一条渐近线方程为,焦点到渐近线的距离为.
(1)求的方程;
(2)过双曲线的右焦点作互相垂直的两条弦(斜率均存在)、.两条弦的中点分别为、,那么直线是否过定点?若不过定点,请说明原因;若过定点,请求出定点坐标.
【典例5-2】(2024·黑龙江·三模)已知双曲线的一条渐近线方程为,点在上.
(1)求双曲线的方程;
(2)过双曲线的左焦点作互相垂直的两条直线,且与交于两点,与交于两点,为线段的中点,为线段的中点,证明:直线过定点.
题型六:抛物线两条互相垂直的弦中点所在直线过定点
【典例6-1】已知一个边长为的等边三角形的一个顶点位于原点,另外两个顶点在抛物线上.
(1)求抛物线的方程;
(2)过点作两条互相垂直的直线和,交抛物线于、两点,交抛物线于,两点,若线段的中点为,线段的中点为,证明:直线过定点.
【典例6-2】已知抛物线:焦点为,为上的动点,位于的上方区域,且的最小值为3.
(1)求的方程;
(2)过点作两条互相垂直的直线和,交于,两点,交于,两点,且,分别为线段和的中点.直线是否恒过一个定点?若是,求出该定点坐标;若不是,说明理由.
【变式6-1】过点作抛物线在第一象限部分的切线,切点为A,F为的焦点,为坐标原点,的面积为1.
(1)求的方程;
(2)过点作两条互相垂直的直线和,交于C,D两点,交于P,Q两点,且M,N分别为线段CD和PQ的中点.直线MN是否恒过一个定点?若是,求出该定点坐标;若不是,说明理由.
【变式6-2】已知抛物线上一点的纵坐标为4,点到焦点的距离为5.过点做两条互相垂直的弦,设弦的中点分别为.
(1)求抛物线的方程;
(2)过焦点作,且垂足为,
(ⅰ)求证直线过定点,并求定点坐标;
(ⅱ)求的最大值.
【变式6-3】(2024·贵州·模拟预测)已知抛物线的焦点到双曲线的渐近线的距离为.
(1)求抛物线的方程;
(2)过点任意作互相垂直的两条直线,分别交曲线于点A,B和M,N.设线段,的中点分别为P,Q,求证:直线恒过一个定点.
题型七:内接直角三角形范围与最值问题
【典例7-1】设椭圆的两焦点为,,为椭圆上任意一点,点到原点最大距离为2,若到椭圆右顶点距离为.
(1)求椭圆的方程.
(2)设椭圆的上、下顶点分别为、,过作两条互相垂直的直线交椭圆于、,问直线是否经过定点?如果是,请求出定点坐标,并求出面积的最大值.如果不是,请说明理由.
【典例7-2】在平面直角坐标系xOy中,已知椭圆,过右焦点作两条互相垂直的弦AB,CD,设AB,CD中点分别为,.
(1)写出椭圆右焦点的坐标及该椭圆的离心率;
(2)证明:直线MN必过定点,并求出此定点坐标;
(3)若弦AB,CD的斜率均存在,求面积的最大值.
【变式7-1】已知椭圆的离心率为,左、右顶点分别为A,,上顶点为,坐标原点到直线的距离为.
(1)求椭圆的方程;
(2)过A点作两条互相垂直的直线,与椭圆交于,两点,求面积的最大值.
题型八:两条互相垂直的弦中点范围与最值问题
【典例8-1】如图,抛物线是抛物线内一点,过点作两条斜率存在且互相垂直的动直线,设与抛物线相交于点与抛物线相交于点,,当恰好为线段的中点时,.
(1)求抛物线的方程;
(2)求的最小值.
【典例8-2】(2024·重庆·三模)已知F,C分别是椭圆的右焦点、上顶点,过原点的直线交椭圆于A,B两点,满足.
(1)求椭圆的方程;
(2)设椭圆的下顶点为,过点作两条互相垂直的直线,这两条直线与椭圆的另一个交点分别为M,N,设直线的斜率为的面积为,当时,求的取值范围.
【变式8-1】已知抛物线:的焦点为,直线与抛物线交于点,且.
(1)求抛物线的标准方程;
(2)过点作两条互相垂直的直线,,与交于,两点,与交于,两点,设线段的中点为,线段的中点为,求面积的最小值.
【变式8-2】已知抛物线的顶点在原点,焦点为,过焦点且斜率为的直线交抛物线于两点,
(1)求抛物线方程;
(2)若,求的值;
(3)过点作两条互相垂直的直线分别交抛物线于四点,且分别为线段的中点,求的面积最小值.
1.已知椭圆,离心率为,点在椭圆上.
(1)求E的方程;
(2)过点作互相垂直的两条直线与,设交E于A,B两点,交E于C,D两点,AB,CD的中点分别为M,N.探究:与的面积之比是否为定值?若是,请求出定值;若不是,请说明理由.
2.已知椭圆过点,点是椭圆的右焦点,且.过点作两条互相垂直的弦,.
(1)求椭圆的方程;
(2)若直线,的斜率都存在,设线段,的中点分别为,.求点到直线的距离的最大值.
3.(2024·全国·模拟预测)已知椭圆的右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)过的两条互相垂直的直线分别交椭圆于两点和两点,设的中点分别为,求面积的最大值.
4.设、分别是椭圆的左、右焦点,若_____,
请在以下两个条件中任选一个补充在横线上并作答.
①四点、、、中,恰有三点在椭圆上;
②椭圆经过点,与轴垂直,且.
(注:如果选择多个条件分别解答,则按第一个解答计分).
(1)求椭圆的离心率;
(2)设是椭圆的上顶点,过任作两条互相垂直的直线分别交椭圆于、两点,过点作线段的垂线,垂足为,判断在轴上是否存在定点,使得的长度为定值?并证明你的结论.
5.已知椭圆的左顶点为,过作两条互相垂直的直线且分别与椭圆交于两点(异于点),设直线的斜率为,为坐标原点.
(1)用表示点的坐标;
(2)求证:直线过定点;
(3)求的面积的取值范围.
6.在平面直角坐标系.xOy中,设,两点的坐标分别为,.直线,相交于点M,且它们的斜率之积是.
(1)求动点M的轨迹方程;
(2)记动点M的轨迹为曲线E,过作两条互相垂直的直线,,与曲线E交于A、B两点,与曲线E交于C、D两点,求的最大值.
7.(2024·高三·江苏镇江·期末)已知椭圆的右焦点,离心率为,过作两条互相垂直的弦,设的中点分别为.
(1)求椭圆的方程;
(2)证明:直线必过定点,并求出此定点坐标;
(3)若弦的斜率均存在,求面积的最大值.
8.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点作两条互相垂直的直线,直线与交于A,B两点,直线与交于D,E两点,的最小值;
(3)为曲线上一点,且的横坐标大于4.过作圆的两条切线,分别交轴于点、,求三角形面积的取值范围.
9.已知点P是曲线C上任意一点,点P到点的距离与到直线y轴的距离之差为1.
(1)求曲线C的方程;
(2)若过不在曲线C上的一点M作互相垂直的两条直线,分别与曲线在y轴右侧的部分相切于A,B两点,求证:直线AB过定点,并求出定点坐标.
10.已知抛物线:的焦点为,点在抛物线上,且.
(1)求抛物线的方程;
(2)过抛物线上一点作两条互相垂直的弦和,试问直线是否过定点,若是,求出该定点;若不是,请说明理由.
11.(2024·四川绵阳·模拟预测)已知椭圆,其左、右焦点分别为F1,F2,离心率,点P为该椭圆上一点,且△F1PF2的面积的最大值为.
(1)求椭圆C的方程;
(2)过椭圆C的上顶点B作两条互相垂直的直线,分别交椭圆C于点D、E,求线段DE长度的最大值.
12.(2024·新疆·二模)在平面直角坐标系xOy中,抛物线G的准线方程为.
(1)求抛物线G的标准方程;
(2)过抛物线的焦点F作互相垂直的两条直线和,与抛物线交于P,Q两点,与抛物线交于C,D两点,M,N分别是线段PQ,CD的中点,求△FMN面积的最小值.
13.(2024·安徽芜湖·模拟预测)已知抛物线,点F为其焦点,P为T上的动点,若|PF|的最小值为1.
(1)求抛物线T的方程;
(2)过x轴上一动点作互相垂直的两条直线,与抛物线T分别相交于点和C,D,点H,K分别为的中点,求△EHK面积的最小值.
14.(2024·江苏泰州·模拟预测)已知,是过点的两条互相垂直的直线,且与椭圆相交于A,B两点,与椭圆相交于C,D两点.
(1)求直线的斜率k的取值范围;
(2)若线段,的中点分别为M,N,证明直线经过一个定点,并求出此定点的坐标.
相关试卷
这是一份重难点突破17 圆锥曲线中参数范围与最值问题(八大题型)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含重难点突破17圆锥曲线中参数范围与最值问题八大题型原卷版docx、重难点突破17圆锥曲线中参数范围与最值问题八大题型解析版docx等2份试卷配套教学资源,其中试卷共99页, 欢迎下载使用。
这是一份高考数学一轮复习讲练测(新教材新高考)重难点突破09函数零点问题的综合应用(八大题型)(原卷版+解析),共58页。试卷主要包含了函数零点问题的常见题型,函数零点的求解与判断方法,利用导数研究零点问题等内容,欢迎下载使用。
这是一份高考数学一轮复习讲练测(新教材新高考)重难点突破09函数零点问题的综合应用(八大题型)(原卷版+解析),共58页。试卷主要包含了函数零点问题的常见题型,函数零点的求解与判断方法,利用导数研究零点问题等内容,欢迎下载使用。