终身会员
搜索
    上传资料 赚现金

    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(原卷版) .docx
    • 解析
      人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(解析版).docx
    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(原卷版) 第1页
    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(原卷版) 第2页
    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(原卷版) 第3页
    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(解析版)第1页
    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(解析版)第2页
    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(解析版)第3页
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(2份,原卷版+解析版)

    展开

    这是一份人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(2份,原卷版+解析版),文件包含人教版高中数学选择性必修三精讲精练第七章随机变量及分布列章末小结及测试原卷版docx、人教版高中数学选择性必修三精讲精练第七章随机变量及分布列章末小结及测试解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。


    第七章 随机变量及分布列 章末小结及测试考法一 条件概率【例1-1】(2023广东肇庆·期中)从1,2,3,4,5中不放回地抽取2个数,则在第1次抽到奇数的条件下,第2次又抽到奇数的概率是(    )A. B. C. D.【例1-2】(2024广东广州)三个男生三个女生站成一排,已知其中女生甲不在两端,则有且只有两个女生相邻的概率是( )A. B. C. D.【例1-3】(2024湖北)某校有7名同学获省数学竞赛一等奖,其中男生4名,女生3名.现随机选取2名学生作“我爱数学”主题演讲.假设事件为“选取的两名学生性别相同”,事件为“选取的两名学生为男生”,则(    )A. B. C. D.【例1-4】(2024·四川德阳 )质数(prime number)又称素数,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则这个数为质数,数学上把相差为2的两个素数叫做“孪生素数”.如:3和5,5和7……,在1900年的国际数学大会上,著名数学家希尔伯特提出了23个问题,其中第8个就是大名鼎鼎的孪生素数猜想:即存在无穷多对孪生素数.我国著名数学家张益唐2013年在《数学年刊》上发表论文《素数间的有界距离》,破解了困扰数学界长达一个半世纪的难题,证明了孪生素数猜想的弱化形式.那么,如果我们在不超过的自然数中,随机选取两个不同的数,记事件,这两个数都是素数;事件:这两个数不是孪生素数,则(    )A. B. C. D.考法二 全概率公式【例2-1】(2024·江苏宿迁 )人工智能领域让贝叶斯公式:站在了世界中心位置,AI换脸是一项深度伪造技术,某视频网站利用该技术掺入了一些“AI”视频,“AI”视频占有率为0.001.某团队决定用AI对抗AI,研究了深度鉴伪技术来甄别视频的真假.该鉴伪技术的准确率是0.98,即在该视频是伪造的情况下,它有的可能鉴定为“AI”;它的误报率是0.04,即在该视频是真实的情况下,它有的可能鉴定为“AI”.已知某个视频被鉴定为“AI”,则该视频是“AI”合成的可能性为(    )A. B. C. D.【例2-2】(2024·山东临沂 )长时间玩手机可能影响视力,据调查,某学校学生中,大约有的学生每天玩手机超过,这些人近视率约为,其余学生的近视率约为,现从该校任意调查一名学生,他近视的概率大约是(    )A. B. C. D.【例2-3】(2024上海浦东新·阶段练习)全概率公式在敏感性问题调查中有着重要应用. 例如某学校调查学生对食堂满意度的真实情况,为防止学生有所顾忌而不如实作答,可以设计如下调查流程:每位学生先从一个装有3个红球,6个白球的盒子中任取3个球,取到至少一个红球的学生回答问题一“你出生的月份是否为3的倍数?”,未取到任何红球的学生回答问题二“你对食堂是否满意?”. 由于两个问题的答案均只有“是”和“否”,而且回答的是哪个问题他人并不知道(取球结果不被看到即可),因此理想情况下学生应当能给出符合实际情况的答案. 已知某学校800名学生参加了该调查,且有250人回答的结果为“是”,由此估计学生对食堂的实际满意度大约为(    )A. B. C. D.【例2-4】(2024山东德州 )某中学开展高二年级“拔尖创新人才”学科素养评估活动,其中物化生、政史地、物化政三种组合人数之比为,这三个组合中分别有的学生参与此次活动,现从这三个组合中任选一名学生,这名学生参与此次活动的概率为(    )A.0.044 B.0.18 C.0.034 D.0.08考法三 二项分布【例3-1】(2024·辽宁 )某植物园种植一种观赏花卉,这种观赏花卉的高度(单位:cm)介于之间,现对植物园部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求的值;(2)以频率估计概率,完成下列问题.(i)若从所有花卉中随机抽株,记高度在内的株数为,求 的分布列及数学期望;(ii)若在所有花卉中随机抽取3株,求至少有2株高度在的条件下,至多 1株高度低于的概率.【例3-2】(2024·四川成都)为了去库存,某商场举行如下促销活动:有两个摸奖箱,A箱内有1个红球、1个黑球、8个白球,箱内有4个红球、4个黑球、2个白球,每次摸奖后放回.消费额满300元有一次A箱内摸奖机会,消费额满600元有一次箱内摸奖机会.每次机会均为从箱子中摸出1个球,中奖规则如下:红球奖50元代金券、黑球奖30元代金券、白球奖10元代金券.(1)某三位顾客各有一次箱内摸奖机会,求中奖10元代金券人数的分布列;(2)某顾客消费额为600元,请问:这位顾客如何抽奖所得的代金券期望值较大?【例3-3】(2024·全国·模拟预测)中医药学是中国古代科学的瑰宝,也是打开中华文明宝库的钥匙.为了调查某地市民对中医药文化的了解程度,某学习小组随机向该地100位不同年龄段的市民发放了有关中医药文化的调查问卷,得到的数据如下表所示:规定成绩在内代表对中医药文化了解程度低,成绩在内代表对中医药文化了解程度高.(1)从这100位市民中随机抽取1人,求抽到对中医药文化了解程度高的市民的频率;(2)将频率视为概率,现从该地41岁~50岁年龄段的市民中随机抽取3人,记为对中医药文化了解程度高的人数,求的分布列和期望.【例3-4】(2024·全国·模拟预测)“男男女女向前冲”是一项热播的闯关类电视节目.该节目一共设置了四关,由以往的数据得,男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.男生甲、乙,女生丙、丁四人小组前往参加闯关挑战(个人赛).(1)求甲闯过四关的概率;(2)设随机变量为该四人小组闯过四关的人数,求.考法四 超几何分布【例4-1】(2023浙江绍兴)临近新年,某水果店购入A,B,C三种水果,数量分别是36箱,27箱,18箱.现采用分层抽样的方法抽取9箱,进行质量检查.(1)应从A,B,C三种水果各抽多少箱?(2)若抽出的9箱水果中,有5箱质量上乘,4箱质量一般,现从这9箱水果中随机抽出4箱送有关部门检测.①用X表示抽取的4箱中质量一般的箱数,求随机变量X的分布列和数学期望;②设A为事件“抽取的4箱水果中,既有质量上乘的,也有质量一般的水果”,求事件A发生的概率.【例4-2】(2023广东揭阳·期末)为增强学生体质,某校高一(1)班组织全班同学参加限时投篮活动,记录他们在规定时间内的进球个数,将所得数据分成,,,,这5组,并得到如下频率分布直方图:(1)估计全班同学的平均进球个数.(同一组中的数据用该组区间的中点值作代表)(2)现按比例分配的分层随机抽样方法,从进球个数在,,内的同学中抽取8人进行培训,再从中抽取3人做进一步培训.(ⅰ)记这3人中进球个数在的人数为X,求X的分布列与数学期望;(ⅱ)已知抽取的这3人的进球个数不全在同一区间,求这3人的进球个数在不同区间的概率.【例4-3】(2023四川成都·期末)某汽车销售店以万元每辆的价格购进了某品牌的汽车.根据以往的销售分析得出,当售价定为万元/辆时,每年可销售辆该品牌的汽车,且每辆汽车的售价每提高千元时,年销售量就减少辆.(1)若要获得最大年利润,售价应定为多少万元/辆?(2)该销售店为了提高销售业绩,推出了分期付款的促销活动.已知销售一辆该品牌的汽车,若一次性付款,其利润为万元;若分期或期付款,其利润为万元;若分期或期付款,其利润为万元.该销售店对最近分期付叙的位购车情况进行了统计,统计结果如下表:若X表示其中任意两辆的利润之差的绝对值,求X的分布列和数学期望.【例4-4】(2024云南昆明)某校高一年级举行数学史知识竞赛,每个同学从10道题中一次性抽出4道作答.小张有7道题能答对,3道不能答对;小王每道答对的概率均为,且每道题答对与否互不影响.(1)分别求小张,小王答对题目数的分布列;(2)若预测小张答对题目数多于小王答对题目数,求的取值范围.考法五 正态分布【例5-1】(2023江西·期末)若随机变量X服从正态分布,,则(    )A.0.45 B.0.55 C.0.1 D.0.9【例5-2】(2024上海)江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布,从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布,下地铁后从地铁站步行到单位要5分钟,从统计的角度出发,下列说法中合理的有(    )参考数据:若,则,,A.若出门,则开私家车不会迟到B.若出门,则乘坐地铁上班不迟到的可能性更大C.若出门,则乘坐地铁上班不迟到的可能性更大D.若出门,则乘坐地铁几乎不可能上班不迟到【例5-3】(2024·福建莆田)某商场将在“周年庆”期间举行“购物刮刮乐,龙腾旺旺来”活动,活动规则:顾客投掷3枚质地均匀的股子.若3枚骰子的点数都是奇数,则中“龙腾奖”,获得两张“刮刮乐”;若3枚骰子的点数之和为6的倍数,则中“旺旺奖”,获得一张“刮刮乐”;其他情况不获得“刮刮乐”.(1)据往年统计,顾客消费额(单位:元)服从正态分布.若某天该商场有20000位顾客,请估计该天消费额在内的人数;附:若,则.(2)已知每张“刮刮乐”刮出甲奖品的概率为,刮出乙奖品的概率为.①求顾客获得乙奖品的概率;②若顾客已获得乙奖品,求其是中“龙腾奖”而获得的概率.考法六 均值与方差【例6-1】(2024河北)(多选)已知随机性离散变量的分布列如下,则的值可以是(    )A. B. C. D.1【例6-2】(2024江苏)(多选)已知正四面体骰子的四个面分别标有数字1,2,3,4,正六面体骰子的六个面分别标有数字1,2,3,4,5,6,抛掷一枚正四面体骰子,记向下的数字为X,抛掷一枚正六面体骰子,记向上的数字为Y,则(    )A. B.C. D.【例6-3】(2013高二·全国课时)一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c,其中a,b,,已知该足球队进行一场比赛得分的均值是1,则的最小值为 .【例6-3】(2024·江西南昌 )甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有的收益率,若投资期间经济形势不好,投资有的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是,经济形势不好的概率是.(1)求投资咨询公司乙预测投资期间经济形势好的概率;(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.考法七 最值问题【例7-1】(2024·甘肃兰州)2024年高三数学适应性考试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得5分,选错得0分,多选题每题四个选项,有两个或三个选项正确,全部选对得6分,部分选对得3分,有错误选择或不选择得0分.(1)已知某同学对其中4道单选题完全没有答题思路,只能随机选择一个选项作答,且每题的解答相互独立,记该同学在这4道单选题中答对的题数为随机变量X.(i)求;(ii)求使得取最大值时的整数;(2)若该同学在解答最后一道多选题时,除确定B,D选项不能同时选择之外没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率均为,求该同学在答题过程中使得分期望最大的答题方式,并写出得分的最大期望.【例7-2】(2024·江苏宿迁)某班欲从6人中选派3人参加学校篮球投篮比赛,现将6人均分成甲、乙两队进行选拔比赛.经分析甲队每名队员投篮命中概率均为,乙队三名队员投篮命中的概率分别为,.现要求所有队员各投篮一次(队员投篮是否投中互不影响).(1)若,求甲、乙两队共投中5次的概率;(2)以甲、乙两队投中次数的期望为依据,若甲队获胜,求的取值范围.【例7-3】(2023重庆·阶段练习)甲、乙两选手进行象棋比赛,设各局比赛的结果相互独立,每局比赛甲获胜的概率为,乙获胜的概率为.(1)若采用5局3胜制比采用3局2胜制对甲更有利,求的取值范围;(2)若,已知甲乙进行了局比赛且甲胜了13局,试给出的估计值(表示局比赛中甲胜的局数,以使得最大的的值作为的估计值).考法八 与其他知识综合运用【例8-1】(2024·安徽蚌埠 )寒假期间小明每天坚持在“跑步3000米”和“跳绳2000个”中选择一项进行锻炼,在不下雪的时候,他跑步的概率为,跳绳的概率为,在下雪天,他跑步的概率为,跳绳的概率为.若前一天不下雪,则第二天下雪的概率为,若前一天下雪,则第二天仍下雪的概率为.已知寒假第一天不下雪,跑步3000米大约消耗能量330卡路里,跳绳2000个大约消耗能量220卡路里.记寒假第天不下雪的概率为.(1)求,,的值,并证明是等比数列;(2)求小明寒假第天通过运动锻炼消耗能量的期望.【例8-2】(2023浙江温州·期末)现有标号依次为1,2,…,n的n个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从号盒子里取出2个球放入n号盒子为止.(1)当时,求2号盒子里有2个红球的概率;(2)当时,求3号盒子里的红球的个数的分布列;(3)记n号盒子中红球的个数为,求的期望.【例8-3】(2024·河南信阳 )小甲参加商场举行的玩游戏换代金券的活动.若参与A游戏,则每次胜利可以获得该商场150元的代金券;若参与B游戏,则每次胜利可以获得该商场200元的代金券;若参与C游戏,则每次胜利可以获得该商场300元的代金券.已知每参与一次游戏需要成本100元,且小甲每次游戏胜利与否相互独立.(1)若小甲参加4次A游戏,每次获胜的概率为,记其最终获得450元代金券的概率为,求函数的极大值点;(2)在(1)的条件下,记小甲参加A,B,C游戏获胜的概率分别为,,.若小甲只玩一次游戏,试通过计算说明,玩哪种游戏小甲获利的期望最大.单选题1.(2023四川绵阳·期末)科技博览会需从5个女生(分别记为,,,,)中选2人参加志愿者服务,已知这5个人被选中的机会相等,则被选中的概率为(    )A.0.25 B.0.4 C.0.5 D.0.752.(2023·江苏泰州·阶段练习)每袋食盐的标准质量为500克,现采用自动流水线包装食盐,抽取一袋食盐检测,它的实际质量与标准质量存在一定的误差,误差值为实际质量减去标准质量.随机抽取100袋食盐,检测发现误差X(单位:克)近似服从正态分布,,则X介于~2的食盐袋数大约为(    )A.4 B.48 C.50 D.963.(2024河南)某校高三数学摸底考试成绩(单位:分)近似服从正态分布,且,该校高三数学摸底考试成绩超过90分的人数有930人,则(    )A.估计该校高三学生人数为1200B.估计该校学生中成绩不超过90分的人数为70.C.估计该校学生中成绩介于90到110分之间的人数为425.D.估计该校学生中成绩不超过90分的人数比超过130分的人数多.4.(2024重庆)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为.在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,则“星队”在两轮活动中猜对个成语的概率为(    )A. B. C. D.5.(2024·江西)中国蹴鞠已有两千三百多年的历史,于2004年被国际足联正式确认为世界足球运动的起源.蹴鞠在2022年卡塔尔世界杯上再次成为文化交流的媒介,走到世界舞台的中央,诉说中国传统非遗故事.为弘扬中华传统文化,某市四所高中各自组建了蹴鞠队(分别记为“甲队”“乙队”“丙队”“丁队”)进行单循环比赛(即每支球队都要跟其他各支球队进行一场比赛),最后按各队的积分排列名次(积分多者名次靠前,积分同者名次并列),积分规则为每队胜一场得3分,平场得1分,负一场得0分.若每场比赛中两队胜、平、负的概率均为,则在比赛结束时丙队在输了第一场且其积分仍超过其余三支球队的积分的概率为(    )  A. B. C. D.6.(2023青海西宁)乒乓球是我国的国球,乒乓球运动在我国十分普及,深受国人喜爱,在民间经常开展各种乒乓球比赛.现有甲乙二人争夺某次乒乓球比赛的冠军,根据以往比赛记录统计的数据,可以认为在每局比赛中甲胜乙的概率为,若比赛为“五局三胜”制,各局比赛结果相互独立且没有平局,则在甲获得冠军的情况下,比赛进行了四局的概率为(    )A. B. C. D.7.(2023辽宁)某校高三学生的一次期中考试的数学成绩(单位:分)近似服从正态分布,从中抽取一个同学的数学成绩,记该同学的成绩为为事件,记该同学的成绩为为事件,则在事件发生的条件下,事件发生的概率为(    )(附参考数据:,,)A. B. C. D.8.(2024·福建莆田)若,则(    )A.事件与互斥 B.事件与相互独立C. D.多选题9.(2024·江苏)设是一个随机试验中的两个事件,且,则(    )A. B.C. D.10(2023·辽宁沈阳)下列命题中,真命题有(   )A.若随机变量,则B.数据6,2,3,4,5,7,8,9,1,10的分位数是8.5C.若随机变量,,则D.若事件,满足且,则与独立11.(2024湖北 )对于随机变量,下列说法正确的有(    )A.若,则B.若,则C.若,则D.若,则12.(2024陕西)下列说法正确的是(    )A.一批文具中有12件正品,4件次品,从中任取3件,则恰好取得1件次品的概率为B.已知随机变量满足,若,则C.将编号为的小球放入编号为的盒子中,每个盒子中放一个小球,则恰有两个小球与所在盒子编号相同的放法有20种D.若,则填空题13.(2023安徽)某商场搞抽奖活动,将30副甲品牌耳机和20副乙品牌耳机放入抽奖箱中,让顾客从中随机抽1副,两个品牌的耳机外包装相同,耳机的颜色都只有黑色和白色,记事件“抽到白色耳机”,“抽到乙品牌耳机”,若,,则抽奖箱中甲品牌的黑色耳机有 副.14.(2024辽宁)新高考模式下,“3+1+2”中“3”是数学、语文、外语三个必选的主科,“1”是物理、历史二选一,“2”是在地理、生物、化学、政治中选两科.已知某校高二学生中有的学生选择物理,剩余的选择历史,选择物理和历史的学生中选择地理的概率分别是和,则从该校高二学生中任选一人,这名学生选择地理的概率为 .15.(2024陕西)有甲、乙、丙三个工厂生产同一型号的产品,甲厂生产的次品率为,乙厂生产的次品率为,丙厂生产的次品率为,生产出来的产品混放在一起.已知甲、乙、丙三个工厂生产的产品数分别占总数的,从中任取一件产品,则取得的产品为次品的概率为 .16.(2024河北)某科研型农场试验了生态柳丁的种植,在种植基地从收获的果实中随机抽取100个,得到其质量(单位:g)的频率分布直方图及商品果率的频率分布表如图.已知基地所有采摘的柳丁都混放在一起,用频率估计概率,现从中随机抽取1个柳丁,则该柳丁为商品果的概率为 .解答题17.(2024·山东临沂)某学校举办了精彩纷呈的数学文化节活动,其中有二个“掷骰子赢奖品”的登台阶游戏最受欢迎游.戏规则如下:抛掷一枚质地均匀的骰子一次,出现3的倍数,则一次上三级台阶,否则上二级台阶,再重复以上步骤,当参加游戏的学生位于第8、第9或第10级台阶时游戏结束规定:从平地开始,结束时学生位于第8级台阶可获得一本课外读物,位于第9级台阶可获得一套智力玩具,位于第10级台阶则认定游戏失败.,(1)某学生抛掷三次骰子后,按游戏规则位于第级台阶,求的分布列及数学期望;(2)甲、乙两位学生参加游戏,求恰有一人获得奖品的概率;18.(2023·广东)多巴胺是一种神经传导物质,能够传递兴奋及开心的信息.近期很火的多巴胺穿搭是指通过服装搭配来营造愉悦感的着装风格,通过色彩艳丽的时装调动正面的情绪,是一种“积极化的联想”.小李同学紧跟潮流,她选择搭配的颜色规则如下:从红色和蓝色两种颜色中选择,用“抽小球”的方式决定衣物颜色,现有一个箱子,里面装有质地、大小一样的4个红球和2个白球,从中任取4个小球,若取出的红球比白球多,则当天穿红色,否则穿蓝色.每种颜色的衣物包括连衣裙和套装,若小李同学选择了红色,再选连衣裙的可能性为0.6,而选择了蓝色后,再选连衣裙的可能性为0.5.(1)写出小李同学抽到红球个数的分布列及期望;(2)求小李同学当天穿连衣裙的概率.19.(2023重庆·阶段练习)某商场在店庆日进行有奖促销活动,当日在该商场消费的顾客可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的7个球,其中3个红球,4个白球,顾客每次摸出1个球不放回,直到摸出所有的红球,则摸奖停止,否则就继续摸球.按规定:摸出3个球停止摸奖获得200元奖金,摸出4个球停止摸奖获得100元奖金,摸出5个球停止摸奖获得50元奖金,其他情况获得10元奖金.(1)若顾客甲获得了100元奖金,求甲第一次摸到的球是红球的概率;(2)已知顾客乙获得了一次摸奖机会,记为乙摸奖获得的奖金数额,求随机变量的分布列和数学期望.20.(2024安徽合肥)我国一科技公司生产的手机前几年的零部件严重依赖进口,2019年某大国对其实施限制性策略,该公司启动零部件国产替代计划,与国内产业链上下游企业开展深度合作,共同推动产业发展.2023年9月该公司最新发布的智能手机零部件本土制造比例达到」90%,以公司与一零部件制造公司合作生产某手机零部件,为提高零部件质量,该公司通过资金扶持与技术扶持,帮助制造公司提高产品质量和竞争力,同时派本公司技术人员进厂指导,并每天随机从生产线上抽取一批零件进行质量检测.下面是某天从生产线上抽取的10个零部件的质量分数(总分1000分,分数越高质量越好):928、933、945、950、959、967、967、975、982、994.假设该生产线生产的零部件的质量分数X近似服从正态分布,并把这10个样本质量分数的平均数作为的值.参考数据:若,则.(1)求的值;(2)估计该生产线上生产的1000个零部件中,有多少个零部件的质量分数低于940?(3)若从该生产线上随机抽取n个零件中恰有个零部件的质量分数在内,则n为何值时,的值最大?21.(2024福建)驾驶员考试(机动车驾驶员考试)是由公安局车管所举办的资格考试,只有通过驾驶员考试才能取得驾照,才能合法的驾驶机动车辆.考试内容和合格标准全国统一,根据不同准驾车型规定相应的考试项目.机动车驾驶人考试内容分为道路交通安全法律、法规和相关知识考武科目(以下简称“科目一”)、场地驾驶技能考试科目(以下简称“科目二”)、道路驾驶技能和安全文明驾驶常识考试科目(以下简称“科目三”).申请人科目一、科目二、科目三考试均合格后,就可以领取驾驶证.某驾校经统计,驾驶员科目一考试平均通过的概率为,科目二:平均通过的概率为,科目三平均通过的概率为.该驾校王教练手下有4名学员参加驾驶员考试.(1)记这4名学员参加驾驶员考试,通过考试并领取驾驶证的人数为X,求X的分布列和数学期望及方差;(2)根据调查发现,学员在学完固定的学时后,每增加一天学习,没有通过考试拿到驾驶证的概率会降为原来的0.4,请问这4名学员至少要增加多少天的学习,才能保证这4名学员都能通过考试并领取驾驶证?(我们把概率超过0.99的事件称为必然事件,认为在一次试验中必然事件一定会发生)参考数据:,22(2024·云南昆明)新高考数学试卷增加了多项选择题,每小题有A、B、C、D四个选项,原则上至少有2个正确选项,至多有3个正确选项.题目要求:“在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.”其中“部分选对的得部分分”是指:若正确答案有2个选项,则只选1个选项且正确得3分;若正确答案有3个选项,则只选1个选项且正确得2分,只选2个选项且都正确得4分.(1)若某道多选题的正确答案是AB,一考生在解答该题时,完全没有思路,随机选择至少一个选项,至多三个选项,请写出该生所有选择结果所构成的样本空间,并求该考生得分的概率;(2)若某道多选题的正确答案是2个选项或是3个选项的概率均等,一考生只能判断出A选项是正确的,其他选项均不能判断正误,给出以下方案,请你以得分的数学期望作为判断依据,帮该考生选出恰当方案:方案一:只选择A选项;方案二:选择A选项的同时,再随机选择一个选项;方案三:选择A选项的同时,再随机选择两个选项. 付款方式一次性分期分期分期分期频数012质量/g商品果率0.70.80.80.90.7
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版高中数学选择性必修三 精讲精练第七章 随机变量及分布列 章末小结及测试(2份,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map