|试卷下载
终身会员
搜索
    上传资料 赚现金
    重庆市江津实验中学2025届九上数学开学学业水平测试试题【含答案】
    立即下载
    加入资料篮
    重庆市江津实验中学2025届九上数学开学学业水平测试试题【含答案】01
    重庆市江津实验中学2025届九上数学开学学业水平测试试题【含答案】02
    重庆市江津实验中学2025届九上数学开学学业水平测试试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市江津实验中学2025届九上数学开学学业水平测试试题【含答案】

    展开
    这是一份重庆市江津实验中学2025届九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在Rt△DEF中,∠EFD=90°,∠DEF=30°,EF=3cm,边长为2cm的等边△ABC的顶点C与点E重合,另一个顶点B(在点C的左侧)在射线FE上.将△ABC沿EF方向进行平移,直到A、D、F在同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2,CE的长为xcm,则下列图象中,能表示y与x的函数关系的图象大致是( )
    A.B.
    C.D.
    2、(4分)如图,□ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为( )
    A.1B.2C.3D.4
    3、(4分)反比例函数图象上有三个点,,,若,则的大小关系是( )
    A.B.C.D.
    4、(4分)在四边形ABCD中,对角线AC、BD相交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;这六个条件中,则下列各组组合中,不能推出四边形ABCD为菱形的是( )
    A.①②⑤B.①②⑥C.③④⑥D.①②④
    5、(4分)如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )
    A.14B.13C.14D.14
    6、(4分)如图,在Rt△ABC中,AC=6,BC=8,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为( )
    A.6B.C.5D.
    7、(4分) 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
    A.18B.9
    C.6D.条件不够,不能确定
    8、(4分)当x=2时,下列各式的值为0的是( )
    A.B.C. D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.
    10、(4分)若一元二次方程有两个不相等的实数根,则k的取值范围是 .
    11、(4分)反比例函数与一次函数的图像的一个交点坐标是,则 =________.
    12、(4分)如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.
    13、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,直线y=2x+3与直线y=﹣2x﹣1.
    (1)求两直线与y轴交点A,B的坐标;
    (2)求两直线交点C的坐标;
    (3)求△ABC的面积.
    15、(8分)已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.
    16、(8分)梯形中,,,,,、在上,平分,平分,、分别为、的中点,和分别与交于和,和交于点.
    (1)求证:;
    (2)当点在四边形内部时,设,,求关于的函数关系式,并写出自变量的取值范围;
    (3)当时,求的长.

    17、(10分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.
    求证:四边形ECCD是矩形.
    18、(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。已知点A在格点,请在给定的网格中按要求画出图形.
    (1)以为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点。
    (2)以为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。
    20、(4分)一个反比例函数(k≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是________.
    21、(4分)计算:____________.
    22、(4分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
    那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.
    23、(4分)下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:
    根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)是正方形的边上一动点(不与重合), ,垂足为,将绕点旋转,得到,当射线经过点时,射线与交于点.
    求证:;
    在点的运动过程中,线段与线段始终相等吗?若相等请证明;若不相等,请说明理由.
    25、(10分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
    26、(12分)如图,BD是▱ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分0≤x≤2、2<x≤3、3<x≤4三种情况,分别求出函数表达式即可求解.
    【详解】
    解:①当0≤x≤2时,如图1,
    设AC交ED于点H,则EC=x,
    ∵∠ACB=60°,∠DEF=30°,
    ∴∠EHC=90°,
    y=S△EHC=×EH×HC=ECsin∠ACB×EC×cs∠ACB=CE2=x2,
    该函数为开口向上的抛物线,当x=2时,y=;
    ②当2<x≤3时,如图2,
    设AC交DE于点H,AB交DE于点G,
    同理△AHG为以∠AHG为直角的直角三角形,
    EC=x,EB=x﹣2=BG,则AG=2﹣BG=2﹣(x﹣2)=4﹣x,
    边长为2的等边三角形的面积为:2×=;
    同理S△AHG=(4﹣x)2,
    y=S四边形BCHG=S△ABC﹣S△AHG=﹣(x﹣4)2,
    函数为开口向下的抛物线,当x=3时,y=,
    ③当3<x≤4时,如图3,
    同理可得:y=﹣[(4﹣x)2+(x﹣3)2]=﹣x2+4x﹣,
    函数为开口向下的抛物线,当x=4时,y=;
    故选:A.
    本题考查的是动点问题的函数图象,此类题目通常需要分不同时间段确定函数的表达式,进而求解.
    2、B
    【解析】
    利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=5,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BEA=∠BAE,
    ∴BE=AB=3,
    ∴CE=BC-BE=5-3=2,
    故选B.
    本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.
    3、A
    【解析】
    反比例函数图象在一三象限,在每个象限内,随的增大而减小,点,,,,,在图象上,且,可知点,,,在第三象限,而,在第一象限,根据函数的增减性做出判断即可.
    【详解】
    解:反比例函数图象在一三象限,随的增大而减小,
    又点,,,,,在图象上,且,
    点,,,在第三象限,,
    点,在第一象限,,

    故选:.
    考查反比例函数的图象和性质,当时,在每个象限内随的增大而减小,同时要注意在同一个象限内,不同象限的要分开比较,利用图象法则更直观.
    4、D
    【解析】
    根据题目中所给条件可得①②组合,③④组合都能判定四边形为平行四边形,再根据一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形进行判定.
    【详解】
    ,,
    四边形是平行四边形,
    如果加上条件⑤可利用对角线互相垂直的平行四边形是菱形进行判定;
    如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定;
    ,,
    四边形是平行四边形,
    如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定.
    故选:.
    此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
    5、D
    【解析】
    24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.
    【详解】
    解:∵AE=10,BE=24,即24和10为两条直角边长时,
    小正方形的边长=24-10=14,
    ∴EF=.
    故选D.
    本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
    6、D
    【解析】
    连接CD,判断四边形是矩形,得到,在根据垂线段最短求得最小值.
    【详解】
    如图,连接CD,

    ∵,,
    ∴四边形是矩形,,
    由垂线段最短可得时线段的长度最小,
    ∵;
    ∴;
    ∵四边形是矩形

    故选:.
    本题考查了矩形的判定和性质,勾股定理和直角三角形中面积的代换,解题的关键在于连接CD,判断四边形是矩形.
    7、C
    【解析】
    因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.
    【详解】
    延长EP交AB于点G,延长DP交AC与点H.
    ∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.
    又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB1.
    故选C.
    本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
    8、C
    【解析】
    根据分式值为0时,分子等于0,分母不等于0解答即可.
    【详解】
    当x=2时,A、B的分母为0,分式无意义,故A、B不符合题意;
    当x=2时,2x-4=0,x-90,故C符合题意;
    当x=2时,x+20,故D不符合题意.
    故选:C
    本题考查的是分式值为0的条件,易错点是在考虑分子等于0 的同时应考虑分母不等于0.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x=1
    【解析】
    【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.
    【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),
    ∴关于x的方程ax+b=0的解是x=1,
    故答案为:x=1.
    【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    10、:k<1.
    【解析】
    ∵一元二次方程有两个不相等的实数根,
    ∴△==4﹣4k>0,
    解得:k<1,
    则k的取值范围是:k<1.
    故答案为k<1.
    11、-6
    【解析】
    根据题意得到ab=2,b-a=3,代入原式计算即可.
    【详解】
    ∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),
    ∴b=,b=a+3,
    ∴ab=2,b-a=3,
    ∴= =2×(-3)=-6,
    故答案为:-6
    此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=3
    12、
    【解析】
    由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。
    【详解】
    证明:如图,连接BE,
    ∵△ACB和△DCE都是等腰直角三角形
    ∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°
    ∴∠DCA=∠BCE,且AC=BC,DC=EC,
    ∴△ADC≌△BEC(SAS)
    ∴AD=BE=,∠D=∠BEC=45°,
    ∴∠AEB=90°
    ∴AB==2
    ∵AB=BC
    ∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.
    本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.
    13、
    【解析】
    由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.
    故答案为
    三、解答题(本大题共5个小题,共48分)
    14、(1)A(0,3),B(0,-1);
    (2)点C的坐标为(-1,1);
    (3)S△ABC= 2.
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)构建方程组确定交点坐标即可;
    (3)过点C作CD⊥AB交y轴于点D,根据S△ABC=AB•CD计算即可.
    【详解】
    (1)在y=2x+3中,当x=0时,y=3,即A(0,3);
    在y=-2x-1中,当x=0时,y=-1,即B(0,-1);
    (2)依题意,得,
    解得;
    ∴点C的坐标为(-1,1);
    (3)过点C作CD⊥AB交y轴于点D;
    ∴CD=1;
    ∵AB=3-(-1)=4;
    ∴S△ABC=AB•CD=×4×1=2.
    本题考查两条直线平行或相交问题、三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.
    15、菱形ABCD的面积为的长为.
    【解析】
    试题分析:
    根据菱形的性质可由AC=16、BD=12求得菱形的面积和菱形的边长,而由求出的面积和边长即可求得BE的长.
    试题解析:
    如图,∵菱形ABCD的对角线相交于点O,AC=16cm,BD=12cm,
    ∴AC⊥BD于点O,CO=8cm,DO=6cm,S菱形=(cm2),
    ∴CD=(cm),
    ∵BE⊥CD于点E,
    ∴BE·CD=72,即10BE=96,
    ∴BE=(cm).
    16、(1)证明见解析;(2);(3)3或.
    【解析】
    (1)由中位线的性质,角平分线的定义和平行线的性质得出,易证,则结论可证;
    (2)过作交于点K,过点D作交于点,则得到矩形,则有,,然后利用(1)中的结论有, ,在中,利用含30°的直角三角形的性质可得出QC,DQ的长度,然后在中利用勾股定理即可找到y关于x的函数关系式;
    (3)分两种情况:点在梯形内部和点在梯形内部,当点在梯形内部时,有;当点在梯形内部时,有 ,分别结论(2)中的关系式即可求出EG的长度.
    【详解】
    (1)证明:、分别是、的中点,

    平分,

    又,



    点是的中点,


    (2)过作交于点K,过点D作交于点,
    ∵,,,
    ∴四边形是矩形,
    ,.
    ,,

    同理:.
    在中,

    ,,



    在中,.

    即.

    (3)①点在梯形内部.
    ∵是梯形的中位线,

    即.
    解得:,
    即.
    ②点在梯形内部.
    同理:.
    解得:,
    即.
    综上所述,EG的长度为3或.
    本题主要考查四边形的综合问题,掌握中位线的性质,含30°的直角三角形的性质,勾股定理是基础,能够作出辅助线并分情况讨论是解题的关键.
    17、见解析
    【解析】
    首先利用中位线定理证得CG∥BD,CG=BD,然后根据四边形ABCD是菱形得到AC⊥BD,DE=BD,从而得到∠DEC=90°,CG=DE,即可得到四边形ECGD是矩形.
    【详解】
    证明:∵CF=BC,
    ∴C点是BF中点,
    ∵点G是DF中点,
    ∴CG是△DBF中位线,
    ∴CG∥BD,CG=BD,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,DE=BD,
    ∴∠DEC=90°,CG=DE,
    ∴四边形ECGD是矩形.
    本题考查了矩形的判定、菱形的性质及三角形的中位线定理,解题的关键是牢记矩形的判定方法,难度不大.
    18、见解析
    【解析】
    (1)因为平行四边形为21,所以平行四边形的高可以是7,底边长为3,利用平行四边形的性质得出符合题意的答案;
    (2)因为平行四边形为20,所以平行四边形的高可以是4,底边长为5,直接利用菱形的性质得出符合题意的答案.
    【详解】
    解:(1)如图甲所示:平行四边形ABCD即为所求;
    (2)如图乙所示:菱形ABCD即为所求.
    此题考查菱形、平行四边形的性质,正确掌握菱形、平行四边形的性质是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、0【解析】
    已知点P(a-1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.
    【详解】
    ∵点P(a-1,a)是第二象限内的点,
    ∴a-1<0且a>0,
    解得:0<a<1.
    故答案为:0<a<1.
    本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+).
    20、
    【解析】
    把(-2,-1)代入,得,k=-1×(-2)=2,∴解析式为.
    21、﹣1
    【解析】
    首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
    【详解】
    原式=﹣8+1+1+3=﹣1.
    故答案为:﹣1.
    本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.
    22、1
    【解析】
    依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
    【详解】
    解:∵被调查学生的总数为10÷20%=50人,
    ∴最喜欢篮球的有50×32%=16人,
    则最喜欢足球的学生数占被调查总人数的百分比= ×100%=1%.
    故答案为:1.
    本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    23、队员1
    【解析】
    根据方差的意义结合平均数可作出判断.
    【详解】
    因为队员1和1的方差最小,队员1平均数最小,所以成绩好,
    所以队员1成绩好又发挥稳定.
    故答案为:队员1.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    二、解答题(本大题共3个小题,共30分)
    24、见解析;,证明见解析
    【解析】
    (1)由旋转性质知∠BPN=∠CPD,再由∠PCD+∠BCP=∠PBN+∠BCP=90°知∠PCD=∠PBN,从而得证;
    (2)先证△MPB∽△BPC得再由△PBN∽△PCD知从而得根据BC=CD可得答案.
    【详解】
    证明:由旋转可得.
    四边形是正方形,



    证明:

    由可知
    本题考查的是相似三角形的综合问题,解题的关键是掌握旋转变换的性质、相似三角形的判定与性质及正方形的性质等知识点,熟练掌握相关知识是解题的关键.
    25、20分钟
    【解析】
    他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
    【详解】
    设他骑“共享助力车”上班需x分钟,

    解得x=20,
    经检验,x=20是原分式方程的解,
    答:他骑“共享助力车”上班需20分钟.
    此题考查分式方程的实际应用,正确理解题意是解题的关键.
    26、见解析
    【解析】
    根据平行四边形的性质可得到AB=CD,AB∥CD,从而可得到∠ABE=∠CDF,根据AAS即可判定△AEB≌△CFD,由全等三角形的性质可得到AE=CF,再根据有一组对边平行且相等的四边形是平行四边形即可证出结论.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴∠ABE=∠CDF,
    ∵AE⊥BD,CF⊥BD,
    ∴∠AEB=∠CFD=90°,AE∥CF,
    在△AEB和△CFD中,

    ∴△AEB≌△CFD(AAS),
    ∴AE=CF,
    ∵AE∥CF,
    ∴四边形AECF是平行四边形.
    本题考查了平行四边形的判定.熟练掌握平行四边形的判定方法是解题的关键.
    题号





    总分
    得分
    批阅人
    类别
    A
    B
    C
    D
    E
    F
    类型
    足球
    羽毛球
    乒乓球
    篮球
    排球
    其他
    人数
    10
    4
    6
    2
    队员1
    队员2
    队员3
    队员4
    平均数(秒)
    51
    50
    51
    50
    方差(秒)
    3.5
    3.5
    14.5
    15.5
    相关试卷

    重庆市江津中学2025届九上数学开学统考模拟试题【含答案】: 这是一份重庆市江津中学2025届九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市江津区实验中学2024年九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份重庆市江津区实验中学2024年九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】: 这是一份上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map