浙江省台州市黄岩区黄岩实验中学2024年数学九年级第一学期开学联考模拟试题【含答案】
展开
这是一份浙江省台州市黄岩区黄岩实验中学2024年数学九年级第一学期开学联考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为( )
A.B.C.D.
2、(4分)已知反比例函数,下列结论中不正确的是( )
A.图象经过点(-1,-1)B.图象在第一、三象限
C.当时,D.当时,y随着x的增大而增大
3、(4分)的倒数是( )
A.B.C.D.
4、(4分)长和宽分别是a, b 的长方形的周长为 10,面积为 6,则a2b ab2的值为( )
A.15B.16C.30D.60
5、(4分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
6、(4分)如图,点,的坐标为,在轴的正半轴,且写过作,垂足为,交轴于点,过作,垂足为,交轴于点,过作,垂足为,交轴于点,,按如此规律进行下去,则点的纵坐标为( )
A.B.
C.D.
7、(4分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
A.1B.1.5C.2D.2.5
8、(4分)下列二次根式中,与是同类二次根式的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
10、(4分)请你写出一个一次函数,使它经过二、三、四象限_____.
11、(4分)在△ABC中,点D,E分别是AB,AC的中点,且DE=3cm,则BC=_____________cm;
12、(4分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.
13、(4分)若函数y=,则当函数值y=8时,自变量x的值等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形中,点是线段上一动点, 为的中点, 的延长线交BC于.
(1)求证: ;
(2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.
15、(8分)如图,已知的三个顶点的坐标分别为、、.
(1)请直接写出点关于原点对称的点的坐标;
(2)将绕坐标原点逆时针旋转得到,画出,直接写出点、的对应点的点、坐标;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.
16、(8分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中,,,表示 一次充电后行驶的里程数分别为,,,.
(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;
电动汽车一次充电后行驶里程数的条形统计图
电动汽车一次充电后行驶里程数的扇形统计图
(2)求扇形统计图中表示一次充电后行驶路为的扇形圆心角的度数;
(3)估计这种电动汽车一次充电后行驶的平均里程多少?
17、(10分)关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)当取满足条件的最大整数时,求方程的根.
18、(10分)如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为1.
(1)求点C的坐标及直线BC的解析式;
(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;
(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,□ABCD的对角线AC,BD相交于点O,若AO+BO=5,则AC+BD的长是________.
20、(4分)因式分解的结果是____.
21、(4分)若,则y _______(填“是”或“不是”)x的函数.
22、(4分)某品牌运动服原来每件售价640元,经过两次降价,售价降低了280元,已知两次降价的百分率相同,则每次降价的百分率为_____.
23、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).
(1)求双曲线的解析式及直线PQ的解析式;
(2)根据图象直接写出不等式>k1x+b的解集.
(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积
25、(10分)已知如图,在正方形中,为的中点,,平分并交于.求证:
26、(12分)某校为了迎接体育中考,了解学生的体质情况,学校随机调查了本校九年级名学生“秒跳绳”的次数,并将调查所得的数据整理如下:
秒跳绳次数的频数、频率分布表
秒跳绳次数的频数分布直方图
、
根据以上信息,解答下列问题:
(1)表中, , ;
(2)请把频数分布直方图补充完整;
(3)若该校九年级共有名学生,请你估计“秒跳绳”的次数以上(含次)的学生有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据已知点的坐标变换发现规律进行求解.
【详解】
根据题意得(2,0)变化后的坐标为(1,0);
(2,4)变化后的坐标为(1,4);
故P点(a,b)变化后的坐标为
故选A.
此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.
2、D
【解析】
根据反比例函数的性质,利用排除法求解.
【详解】
解:A、x=-1,y==-1,∴图象经过点(-1,-1),正确;
B、∵k=1>0,∴图象在第一、三象限,正确;
C、∵k=1>0,∴图象在第一象限内y随x的增大而减小,∴当x>1时,0<y<1,正确;
D、应为当x<0时,y随着x的增大而减小,错误.
故选:D.
本题考查了反比例函数的性质,当k>0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小.
3、B
【解析】
直接利用倒数的定义进而得出答案.
【详解】
∵×()=1,
∴的倒数.
故选B.
此题主要考查了倒数,正确把握倒数的定义是解题关键.
4、C
【解析】
直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.
【详解】
∵边长分别为a、b的长方形的周长为10,面积6,
∴2(a+b)=10,ab=6,
则a+b=5,
故ab2+a2b=ab(b+a)
=6×5
=1.
故选C.
此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.
5、C
【解析】
此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴鞋店最喜欢的是众数.
故选C.
考点:统计量的选择.
6、B
【解析】
根据已知利用角的直角三角形中边角关系,可依次求出,,,,,,,,再由,可知点在轴的负半轴上,即可求解.
【详解】
解:的坐标为,,
,
过作,
,
,,
过作,
,
,,
过作,
,
,,
,
点在轴的负半轴上,
点的纵坐标为;
故选:.
本题考查探索点的规律;利用角的特殊直角三角形的边角关系,分别求出各点坐标找到规律是解题的关键.
7、C
【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
【详解】
连接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
由折叠的性质得:Rt△ABG≌Rt△AFG,
在△AFE和△ADE中,
∵AE=AE,AD=AF,∠D=∠AFE,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
设DE=FE=x,则CG=3,EC=6−x.
在直角△ECG中,根据勾股定理,得:
(6−x)2+9=(x+3)2,
解得x=2.
则DE=2.
熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
8、D
【解析】
先将各选项化简,再根据同类二次根式的定义解答.
【详解】
解:A、与被开方数不同,不是同类二次根式,故本选项错误;
B、=3是整数,故选项错误;
C、=与的被开方数不同,不是同类二次根式,故本选项错误;
D、与被开方数相同,是同类二次根式,故本选项正确.
故选:D.
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (2,3)
【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
【详解】
如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
∵点A、B的坐标分别为(-2,1)、(1,0),
∴AC=2,BC=2+1=3,
∵∠ABA′=90°,
∴ABC+∠A′BC′=90°,
∵∠BAC+∠ABC=90°,
∴∠BAC=∠A′BC′,
∵BA=BA′,∠ACB=∠BC′A′,
∴△ABC≌△BA′C′,
∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
∴点A′的坐标为(2,3).
故答案为(2,3).
此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
10、答案不唯一:如y=﹣x﹣1.
【解析】
根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.
【详解】
∵图象经过第二、三、四象限,∴如图所示.
设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.
故答案为:答案不唯一:如y=﹣x﹣1.
本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.
11、1
【解析】
由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.
【详解】
∵△ABC中,D、E分别是AB、AC边上的中点,
∴DE是三角形的中位线,
∵DE=3cm,
∴BC=2DE=1cm.
故答案为:1.
本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
12、(5,1)
【解析】
【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.
【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,
∴所得的点的坐标为:(5,1),
故答案为(5,1).
【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.
13、或4
【解析】
【分析】把y=8,分别代入解析式,再解方程,要注意x的取值范围.
【详解】由已知可得x2+2=8或2x=8,
分别解得x1=(不符合题意舍去),x2=-,x3=4
故答案为或4
【点睛】本题考核知识点:求函数值.解题关键点:注意x的取值范围.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2) PD=8-t,运动时间为秒时,四边形PBQD是菱形.
【解析】
(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
【详解】
(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
又∵O为BD的中点,
∴OB=OD,
在△POD与△QOB中,
,
∴△POD≌△QOB,
∴OP=OQ;
(2)PD=8-t,
∵四边形PBQD是菱形,
∴BP=PD= 8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,
即62+t2=(8-t)2,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.
15、 (1) ;(2)图详见解析,, ;(3),,
【解析】
(1)由关于原点O对称的点的坐标特点即可得出答案;
(2)由旋转的性质即可得出答案;
(3)分三种情况:①BC为对角线时;②AB为对角线时;③AC为对角线时;由平行四边形的性质即可得出答案.
【详解】
解:(1)∵A(-2,3),
∴点A关于原点O对称的点的坐标为(2,-3);
(2)将△ABC绕坐标原点O逆时针旋转90°,
如图1所示:
A′点的坐标为(-3,-2);
(3)如图2所示:
BC为对角线时,点D的坐标为(-5,-3);
AB为对角线时,点D的坐标为(-7,3);
AC为对角线时,点D的坐标为(3,3);
综上所述,以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(-5,-3)或(-7,3)或(3,3).
本题考查了平行四边形的性质、旋转的性质、关于原点O对称的点的坐标特点、坐标与图形性质;熟练掌握平行四边形的性质和旋转的性质是解题的关键.
16、(1)总共有辆.类有10辆,图略;(2)72°;(3)这种电动汽车一次充电后行驶的平均里程数为千米.
【解析】
(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出这次被抽检的电动汽车总量,再分别减去B、C、D等级的辆数,得到A等级的辆数,即可补全条形图;
(2)用D等级的辆数除以汽车总量,得到其所占的百分比,再乘以360°得到扇形圆心角的度数;
(3)用总里程除以汽车总辆数,即可解答.
【详解】
解:(1)这次被抽检的电动汽车共有30÷30%=100(辆).
A等级汽车数量为:100-(30+40+20)=10(辆).
条形图补充如下:
(2)D等级对应的圆心角度数为.
(3).
答:这种电动汽车一次充电后行驶的平均里程数为千米.
本题考查条形统计图、扇形统计图和加权平均数的定义,解题的关键是明确题意,找出所求问题需要的条件.
17、(1)且;(2),
【解析】
(1)根据题意可得且,由此即可求得m的取值范围;(2)在(1)的条件下求得m的值,代入解方程即可.
【详解】
(1)关于的一元二次方程有两个不相等的实数根,
且.
解得且.
的取值范围是且.
(2)在且的范围内,最大整数为.
此时,方程化为.
解得,.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
18、(1)C(3,0),直线BC的解析式为y=﹣x+4;(2)满足条件的点G坐标为(0,)或(0,﹣1);(3)存在,满足条件的点D的坐标为(,0)或(﹣,0)或(﹣,0)
【解析】
(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.
(2)分两种情形:①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.求出.②当时,如图中,同法可得,利用待定系数法即可解决问题.
(3)利用三角形的面积公式求出点的坐标,求出直线的解析式,作交直线于,此时,,当时,可得四边形,四边形是平行四边形,可得,,,,再根据对称性可得解决问题.
【详解】
解:(1)直线与轴交于点,与轴交于点,
,,
,,
,
,
,
,
设直线的解析式为,则有,
.
直线的解析式为.
(2),,,
,设,
①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.
四边形是正方形,易证,
,,
,
点在直线上,
,
,
.
②当时,如图中,同法可得,
点在直线上,
,
,
.
综上所述,满足条件的点坐标为或.
(3)如图3中,设,
,
,
,
,
,,
直线的解析式为,
作交直线于,此时,,
当时,可得四边形,四边形是平行四边形,可得,,,,
根据对称性可得点关于点的对称点,也符合条件,
综上所述,满足条件的点的坐标为,或,或,.
本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1;
【解析】
根据平行四边形的性质可知:AO=OC,BO=OD,从而求得AC+BC的长.
【详解】
∵四边形ABCD是平行四边形
∴OC=AO,OB=OD
∵AO=BO=2
∴OC+OD=2
∴AC+BD=AO+BO+CO+DO=1
故答案为:1.
本题考查平行四边形的性质,解题关键是得出OC+OD=2.
20、
【解析】
先提取公因式6x2即可.
【详解】
=.
故答案为:.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
21、不是
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.
【详解】
对于x的值,y的对应值不唯一,故不是函数,
故答案为:不是.
本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.
22、25% .
【解析】
设每次降价的百分率为x,根据题意可得,640×(1-降价的百分率)2=(640-280),据此方程解答即可.
【详解】
设每次降价的百分率为x
由题意得:
解得:x=0.25
答:每次降低的百分率是25%
故答案为:25%
本题考查一元二次方程的应用,属于典型题,审清题意,列出方程是解题关键.
23、84或24
【解析】
分两种情况考虑:
①当△ABC为锐角三角形时,如图1所示,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD+DC=9+5=14,
则S△ABC=BC⋅AD=84;
②当△ABC为钝角三角形时,如图2所示,
∵AD⊥BC,
∴∠ADB=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD−DC=9−5=4,
则S△ABC=BC⋅AD=24.
综上,△ABC的面积为24或84.
故答案为24或84.
点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)双曲线的解析式为,线PQ的解析式为:;
(2)-2<x<0或x>-1;
(3)△APQ的面积为
【解析】
试题分析:(1)利用代入法求出a的值,然后根据交点可求出m的值,从而求出解析式;
(2)根据图像可直接求解出取值范围;
(3)分别求出交点,利用割补法求三角形的面积即可.
试题解析:(1)把代入中得
∴p(-2,3)
把代入中,得k=-6
∴双曲线解析式为
把代入中,得m=-3
∴a(1,-6)
把时,,时,代入
得: ∴
直线pa解析式为:
②-2<x<0 或x>-1
③在与中,y=0 解设x=-1
∴M(-1,0)
∴
=
=
∴△APO面积为
【详解】
请在此输入详解!
25、见解析
【解析】
取DA的中点F,连接FM,根据正方形的性质可得DA=AB,∠A=∠ABC=∠CBE=90°,然后利用ASA即可证出△DFM≌△MBN,再根据全等三角形的性质即可得出结论.
【详解】
解:取DA的中点F,连接FM
∵四边形是正方形
∴DA=AB,∠A=∠ABC=∠CBE=90°
∴∠FDM+∠AMD=90°
∵
∴∠BMN+∠AMD=90°
∴∠FDM=∠BMN
∵点F、M分别是DA、AB的中点
∴DF=FA=DA=AB=AM=MB
∴△AFM为等腰直角三角形
∴∠AFM=45°
∴∠DFM=180°-∠AFM=135°
∵平分
∴∠CBN==45°
∴∠MBN=∠ABC+∠CBN=135°
∴∠DFM=∠MBN
在△DFM和△MBN中
∴△DFM≌△MBN
∴
此题考查的是正方形的性质和全等三角形的判定及性质,掌握正方形的性质和构造全等三角形的方法是解决此题的关键.
26、(1);;(2)详见解析;(3)336
【解析】
(1)根据0≤x<20的频数除以频率求出总人数,进而求出a,m的值即可;
(2)求出40≤x<60的频数,补全条形统计图即可;
(3)求出“30秒跳绳”的次数60次以上(含60次)的频率,乘以600即可得到结果.
【详解】
(1)根据题意得:a=10÷(5÷0.1)=0.2,b=0.14×(5÷0.1)=7,m=50-(5+10+7+12)=16;
故答案为:0.2;16;
(2)如图所示,柱高为;
(3)(人)
则“30秒跳绳”的次数60次以上(含60次)的学生约有336人.
此题考查了频数(率)分布直方图,以及利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
10
2
1
1
相关试卷
这是一份2024年浙江省台州市黄岩区九上数学开学联考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省台州市黄岩区黄岩实验中学九上数学开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省台州市黄岩区黄岩实验中学2022-2023学年数学九年级第一学期期末质量跟踪监视模拟试题含解析,共23页。试卷主要包含了sin 30°的值为,下列说法中,不正确的是,下列命题正确的是等内容,欢迎下载使用。