开学活动
搜索
    上传资料 赚现金

    2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】

    2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】第1页
    2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】第2页
    2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】

    展开

    这是一份2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
    A.方有两个相等的实数根B.方程有一根等于0
    C.方程两根之和等于0D.方程两根之积等于0
    2、(4分)下列二次根式中,最简二次根式是( )
    A.B.C.D.
    3、(4分)如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为( )
    A.60B.16C.30D.11
    4、(4分)化简的结果是( )
    A.B.C.D.
    5、(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( )
    A.1~3月份利润的平均数是120万元
    B.1~5月份利润的众数是130万元
    C.1~5月份利润的中位数为120万元
    D.1~2月份利润的增长快于2~3月份利润的增长
    6、(4分)如图,直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为( )
    A.x≤-2或x≥-1B.0≤y≤2C.-2≤x≤0D.-2≤x≤-1
    7、(4分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
    A.70°B.60°C.50°D.80°
    8、(4分)下列命题中,假命题的是( )
    A.矩形的对角线相等
    B.平行四边形的对角线互相平分
    C.对角线互相垂直平分的四边形是菱形
    D.对角线相等且互相垂直的四边形是正方形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为_____.
    10、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=1.D,E分别为边BC,AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=_____.
    11、(4分)如图,在菱形ABCD中,∠C=60º,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为____________.
    12、(4分)如图,在中,已知,,现将沿所在的直线向右平移4cm得到,于相交于点,若,则阴影部分的面积为______.
    13、(4分)已知y+2与x-3成正比例,且当x=0时,y=1,则当y=4时,x的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知反比例函数y=的图象经过点A(x1,y1)和B(x2,y2)(x1<x2)
    (1)若A(4,n)和B(n+,3),求反比例函数的表达式;
    (2)若m=1,
    ①当x2=1时,直接写出y1的取值范围;
    ②当x1<x2<0,p=,q=,试判断p,q的大小关系,并说明理由;
    (3)若过A、B两点的直线y=x+2与y轴交于点C,连接BO,记△COB的面积为S,当<S<1,求m的取值范围.
    15、(8分)如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).
    (1)请直接写出点B关于点A对称的点的坐标;
    (2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
    (3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
    16、(8分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个ABC和一点O,ABC的顶点和点O均与小正方形的顶点重合.
    (1)在方格纸中,将ABC向下平移5个单位长度得到A1B1C1,请画出A1B1C1;
    (1)在方格纸中,将ABC绕点O旋转180°得到A1B1C1,请画出A1B1C1.
    (3)求出四边形BCOC1的面积
    17、(10分)如图,在四边形ABCD中,,E为边BC上一点,且EC=AD,连接AC.
    (1)求证:四边形AECD是矩形;
    (2)若AC平分∠DAB,AB=5,EC=2,求AE的长,
    18、(10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
    (1)当时,求该抛物线下方(包括边界)的好点个数.
    (2)当时,求该抛物线上的好点坐标.
    (3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.
    20、(4分)计算: _____________.
    21、(4分)如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.
    22、(4分)将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.
    23、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知两条线段长分别是一元二次方程的两根,
    (1)解方程求两条线段的长。
    (2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
    (3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
    25、(10分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,
    (1)求证:四边形DBCF是平行四边形
    (2)若∠A=30°,BC=4,CF=6,求CD的长
    26、(12分)已知关于x的一次函数y=(3-m)x+m-5的图象经过第二、三、四象限,求实数m的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
    解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
    把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
    ∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
    ∴1+(﹣1)=0,
    即只有选项C正确;选项A、B、D都错误;
    故选C.
    2、B
    【解析】
    化简得到结果,即可做出判断.
    【详解】
    解:A、=,不是最简二次根式;
    B、是最简二次根式;
    C、=7,不是最简二次根式;
    D、=,不是最简二次根式;
    故选:B.
    此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.
    3、C
    【解析】
    先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.
    【详解】
    ∵矩形的周长为10,
    ∴a+b=5,
    ∵矩形的面积为6,
    ∴ab=6,
    ∴a2b+ab2=ab(a+b)=1.
    故选:C.
    本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
    4、C
    【解析】
    直接利用二次根式的乘法运算法则,计算得出答案.
    【详解】
    解:,
    故选择:C.
    此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.
    5、B
    【解析】
    本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.
    【详解】
    A. 1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除
    B. 1~5月份的利润分别是100,110,130,115,130,众数为130,符合.
    C. 1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.
    D. 1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.
    故答案为B
    本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.
    平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.
    众数:出现次数最多的数据为众数.
    6、D
    【解析】
    先确定直线OA的解析式为y=-2x,然后观察函数图象得到当-2≤x≤-1时,y=kx+b的图象在x轴上方且在直线y=-2x的下方.
    【详解】
    解:直线OA的解析式为y=-2x,
    当-2≤x≤-1时,0≤kx+b≤-2x.
    故选:D.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    7、A
    【解析】
    根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.
    【详解】
    根据题意尺规作图得到NM是AC的垂直平分线,
    故AD=CD,
    ∴∠DAC=∠C=30°,
    ∵∠B=50°,∠C=30°
    ∴∠BAC=180°-50°-30°=100°,
    ∴∠BAD=∠BAC-∠DAC=70°.
    故选A.
    此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.
    8、D
    【解析】
    根据平行四边形,矩形,菱形和正方形的对角线进行判断即可.
    【详解】
    A、矩形的对角线相等,是真命题;
    B、平行四边形的对角线互相平分,是真命题;
    C、对角线互相垂直平分的四边形是菱形,是真命题;
    D、对角线平分、相等且互相垂直的四边形是正方形,是假命题;
    故选:D.
    本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3
    【解析】
    过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.
    【详解】
    解:过P作PE⊥OB,
    ∵∠AOP=∠BOP,∠AOB=45°,
    ∴∠AOP=∠BOP=22.5°,
    ∵PC∥OA,
    ∴∠OPC=∠AOP=22.5°,
    ∴∠PCE=45°,
    ∴△PCE是等腰直角三角形,

    ∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
    ∴PD=PE=.
    本题考查了角平分线的性质,平行线的性质,等腰直角三角形的判定和性质,求得∠PCE=45°是解题的关键.
    10、2.
    【解析】
    由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求CD=2,由AC∥DF,则∠AEF=∠EFD=60°,且DE=DF,可得∠DEF=∠DFE=60°,可得∠DEC=60°.根据勾股定理可求EC的长,即可求AE的长.
    【详解】
    如图:
    ∵折叠,
    ∴∠EAD=∠FAD,DE=DF,
    ∴∠DFE=∠DEF;
    ∵△AEF是等边三角形,
    ∴∠EAF=∠AEF=60°,
    ∴∠EAD=∠FAD=30°;
    在Rt△ACD中,AC=6,∠CAD=30°,
    ∴CD=2;
    ∵FD⊥BC,AC⊥BC,
    ∴AC∥DF,
    ∴∠AEF=∠EFD=60°,
    ∴∠FED=60°;
    ∵∠AEF+∠DEC+∠DEF=110°,
    ∴∠DEC=60°;
    ∵在Rt△DEC中,∠DEC=60°,CD=2,
    ∴EC=2;
    ∵AE=AC﹣EC,
    ∴AE=6﹣2=2;
    故答案为:2.
    本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED 度数是本题的关键.
    11、1
    【解析】
    先根据菱形的性质可得,再根据线段中点的定义可得,然后根据等边三角形的判定与性质可得,从而可得,最后根据菱形的周长公式即可得.
    【详解】
    四边形ABCD是菱形,
    点E、F分别是AB、AD的中点

    是等边三角形
    则菱形ABCD的周长为
    故答案为:1.
    本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.
    12、1
    【解析】
    根据平移的性质求出A′B,然后根据阴影部分的面积列式计算即可得解.
    【详解】
    解:∵AB=BC=9cm,平移距离为4cm,
    ∴A′B=9−4=5cm,
    ∵,
    ∴,
    ∵∠ABC=90°,
    ∴阴影部分的面积=,
    故答案为:1.
    本题考查了平移的性质,是基础题,熟记平移的性质是解题的关键.
    13、-1
    【解析】
    解:设y+2=k(x-1),
    ∵x=0时,y=1,
    ∴k(0-1)=1+2,
    解得:k=-1,
    ∴y+2=-(x-1),
    即y=-x+1,
    当y=4时,则4=-x+1,解得x=-1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=;(2)①当0<x1<1时,y1>1,当x1<0时,y1<0;②p<q,见解析;(3)<m<3或-1<m<-
    【解析】
    (1)将点A,B的坐标代入反比例函数解析式中,联立方程组即可得出结论;
    (2)先得出反比例函数解析式,
    ①先得出x1=,再分两种情况讨论即可得出结论;
    ②先表示出y1=,y2=,进而得出p=,最后用作差法,即可得出结论;
    (3)先用m表示出x2=-1+,再求出点C坐标,进而用x2表示出S,再分两种情况用<S<1确定出x2的范围,即可得出-1+的范围,即可得出m的范围.
    【详解】
    解:(1)∵A(4,n)和B(n+,3)在反比例函数y=的图象上,
    ∴4n=3(n+)=m,
    ∴n=1,m=4,
    ∴反比例函数的表达式为y=;
    (2)∵m=1,
    ∴反比例函数的表达式为y=,
    ①如图1,∵B(x2,y2)在反比例函数y=的图象上,
    ∴y2=1,
    ∴B(1,1),
    ∵A(x1,y1)在反比例函数y=的图象上,
    ∴y1=,
    ∴x1=,
    ∵x1<x2,x2=1,
    ∴x1<1,
    当0<x1<1时,y1>1,
    当x1<0时,y1<0;
    ②p<q,理由:∵反比例函数y=的图象经过点A(x1,y1)和B(x2,y2),
    ∴y1=,y2=,
    ∴p===,
    ∵q=,
    ∴p-q=-==,
    ∵x1<x2<0,
    ∴(x1+x2)2>0,x1x2>0,x1+x2<0,
    ∴<0,
    ∴p-q<0,
    ∴p<q;
    (3)∵点B(x2,y2)在直线AB:y=x+2上,也在在反比例函数y=的图象上,
    ∴,解得,x=-1,
    ∵x1<x2,
    ∴x2=-1+
    ∵直线AB:y=x+2与y轴相交于点C,
    ∴C(0,2),
    当m>0时,如图2,
    ∵A(x1,y1)和B(x2,y2)(x1<x2),
    ∴点B的横坐标大于0,
    即:x2>0
    ∴S=OC•x2=×2×x2=x2,
    ∵<S<1,
    ∴<x2<1,
    ∴<-1+<1,
    ∴<m<3;
    当m<0时,如图3,∵A(x1,y1)和B(x2,y2)(x1<x2),
    ∴点B的横坐标小于0,
    即:x2<0
    ∴S=OC•|x2|=-×2×x2=-x2,
    ∵<S<1,
    ∴<-x2<1,
    ∴-1<x2<-,
    ∴-1<-1+<-,
    ∴-1<m<-,
    即:当<S<1时,m的取值范围为<m<3或-1<m<-.
    此题是反比例函数综合题,主要考查了待定系数法,作差法比较代数式大小的方法,不等式组的解法,用分类讨论的思想解决问题是解本题的关键.
    15、(1)(2,6);(2)作图见解析,点B'的坐标(0,-6);(3)(-7,3),(3,3),(-5,-3)
    【解析】
    (1)点B关于点A对称的点的坐标为(2,6);
    (2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;
    (3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.
    【详解】
    解:(1)点B关于点A对称的点的坐标为(2,6);
    (2)所作图形如图所示:

    点B'的坐标为:(0,-6);
    (3)当以AB为对角线时,点D坐标为(-7,3);
    当以AC为对角线时,点D坐标为(3,3);
    当以BC为对角线时,点D坐标为(-5,-3).
    本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    16、(1)见解析;(1)见解析;(3)11.5
    【解析】
    无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.
    【详解】
    解:(1)如图:分别将A,B,C三点向下平移5各单位,得到A1,B1,C1,然后再顺次连接即可。
    (1)如图:分别将A,B,C三点绕点O旋转180°得到A1,B1,C1,然后再顺次连接即可。
    (3)四边形BCOC1的面积=△BCC1的面积+△COC1的面积=×5×4+×5×1=11.5
    本题考查了图形的平移和旋转以及图形的面积,其中关键是作出各个关键点的对应点.
    17、(1)证明见详解;(2)4
    【解析】
    (1)首先判定该四边形为平行四边形,然后得到∠D=90°,从而判定矩形;
    (2)求得BE的长,在直角三角形ABE中利用勾股定理求得AE的长即可.
    【详解】
    解:(1)证明:∵AD∥BC,EC=AD,
    ∴四边形AECD是平行四边形.
    又∵∠D=90°,
    ∴四边形AECD是矩形.
    (2)∵AC平分∠DAB.
    ∴∠BAC=∠DAC.
    ∵AD∥BC,
    ∴∠DAC=∠ACB.
    ∴∠BAC=∠ACB.
    ∴BA=BC=1.
    ∵EC=2,
    ∴BE=2.
    ∴在Rt△ABE中,AE=.
    本题考查了矩形的判定及勾股定理的知识,解题的关键是利用矩形的判定定理判定四边形是矩形,难度不大.
    18、(1)好点有:,,,和,共5个;(2),和;(3).
    【解析】
    (1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.
    【详解】
    解:(1)当时,二次函数的表达式为
    画出函数图像(图1)
    图1
    当时,;当时,
    抛物线经过点和
    好点有:,,,和,共5个
    (2)当时,二次函数的表达式为
    画出函数图像(图2)
    图2
    当时,;当时,;当时,
    该抛物线上存在好点,坐标分别是,和
    (3)抛物线顶点P的坐标为
    点P支直线上
    由于点P在正方形内部,则
    如图3,点,
    图3
    当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)
    当抛物线经过点时,
    解得:,(舍去)
    当抛物线经过点时,
    解得:,(舍去)
    当时,顶点P在正方形OABC内,恰好存在8个好点
    本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、20 1
    【解析】
    根据矩形的对角线相等且互相平分,即可得出结果.
    【详解】
    解:如果一条对角线用了20盆红花,还需要从花房运来20盆红花;理由如下:
    ∵矩形的对角线互相平分且相等,
    ∴一条对角线用了20盆红花,
    ∴还需要从花房运来红花20盆;
    如果一条对角线用了25盆红花,还需要从花房运来1盆红花;理由如下:
    一条对角线用了25盆红花,中间一盆为对角线交点,25-1=1,
    ∴还需要从花房运来红花1盆,
    故答案为:20,1.
    本题考查矩形的性质,解题关键是熟练掌握矩形的对角线互相平分且相等的性质.
    20、1
    【解析】
    根据开平方运算的法则计算即可.
    【详解】
    1.
    故答案为:1.
    本题考查了实数的运算-开方运算,比较简单,注意符号的变化.
    21、2<v<1
    【解析】
    由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.
    【详解】
    ∵∠ACO=45°,直线AB经过二、四象限,
    ∴设直线AB的解析式为y=﹣x+b.
    ∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,
    ∴p=,q=,
    ∴点A(u,),点B(v,).
    ∵点A、B为直线AB上的点,
    ∴=﹣u+b①,=﹣v+b②,
    ①﹣②得:,
    即.
    ∵<u<2,
    ∴2<v<1,
    故答案为:2<v<1.
    本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.
    22、
    【解析】
    先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.
    【详解】
    解:设原来矩形的长为x,宽为y,
    则对折后的矩形的长为y,宽为,
    ∵得到的两个矩形都和原矩形相似,
    ∴x:y=y:,
    解得x:y=:1.
    ∴矩形的短边与长边的比为1:,
    故答案为:.
    本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.
    23、
    【解析】
    根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.
    【详解】

    ∵矩形纸片中,,
    现将其沿对折,使得点C与点A重合,点D落在处,
    ∴ ,
    在中,,
    即 解得 ,
    故答案为:.
    本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.
    二、解答题(本大题共3个小题,共30分)
    24、(1)2和6;(2);(3)
    【解析】
    (1)求解该一元二次方程即可;
    (2)先确定等腰三角形的边,然后求面积即可;
    (3)设分为两段分别是和,然后用勾股定理求出x,最后求面积即可.
    【详解】
    解:(1)由题意得,
    即:或,
    ∴两条线段长为2和6;
    (2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,
    由勾股定理得:该等腰三角形底边上的高为:
    ∴此等腰三角形面积为=.
    (3)设分为及两段
    ∴,
    ∴,
    ∴面积为.
    本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
    25、(1)见解析(2)
    【解析】
    (1)根据对角线互相平分即可证明;
    (2)由四边形DBCF是平行四边形,可得CF∥AB,DF∥BC,可得∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,由直角三角形的性质得到FG,CG,GD的长,由勾股定理即可求解.
    【详解】
    (1)∵E为CD的中点,
    ∴CE=DE,又EF=EB
    ∴四边形DBCF是平行四边形
    (2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC,
    ∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,
    在Rt△FCG中,CF=6,
    ∴FG=CF=3,CG=3
    ∵DF=BC=4,
    ∴DG=1,
    ∴在Rt△DCG中,CD=
    此题主要考查平行四边形的判定与性质,解题的关键是熟知含30°的直角三角形的性质.
    26、3<m<1.
    【解析】
    根据一次函数的性质即可求出m的取值范围.
    【详解】
    ∵一次函数的图象经过第二、三、四象限,
    ∴,
    ∴3<m<1.
    本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.
    题号





    总分
    得分

    相关试卷

    2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江西省南昌市十学校数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年江西省南昌市十学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map