陕西省西安市工大附中2024-2025学年数学九上开学统考模拟试题【含答案】
展开
这是一份陕西省西安市工大附中2024-2025学年数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)六边形的内角和是( )
A.540° B.720° C.900° D.360°
2、(4分)如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是( )
A.10B.16C.18D.20
3、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是( )
A.甲B.乙C.丙D.丁
4、(4分)根据《九章算术》的记载中国人最早使用负数,下列四个数中的负数是( )
A.B.C.D.
5、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,若,.则AB的长为( )
A.B.3C.D.
6、(4分)下列各式计算正确的是( )
A.+=B.2﹣=
C.D.÷=
7、(4分)矩形中,,,点为的中点,将矩形右下角沿折叠,使点落在矩形内部点位置,如图所示,则的长度为( )
A.B.C.D.
8、(4分)二次根式有意义的条件是( )
A.x<2B.x<﹣2C.x≥﹣2D.x≤2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)等腰三角形的一个内角是30°,则另两个角的度数分别为___.
10、(4分)若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.
11、(4分)已知双曲线经过Rt△OAB斜边OA的中点D,与直角边AB相交于点C,若S△OAC=3,则k=______.
12、(4分)若分式的值为0,则__.
13、(4分)如图,把Rt△ABC(∠ABC=90°)沿着射线BC方向平移得到Rt△DEF,AB=8,BE=5,则四边形ACFD的面积是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知反比例函数y1=的图象与一次函数:y2=ax+b的图象相交于点A(1,4)、B(m,﹣2)
(1)求出反比例函数和一次函数的关系式;
(2)观察图象,直按写出使得y1<y2成立的自变量x的取值范围;
(3)如果点C是x轴上的点,且△ABC的面积面积为6,求点C的坐标.
15、(8分)小亮步行上山游玩,设小亮出发x min加后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系,
(1)小亮行走的总路程是____________m,他途中休息了____________min.
(2)当5080时,求y与x的函数关系式.
16、(8分)(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,并说明理由.
(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.
17、(10分)如图,▱ABCD中,E是AB的中点,连结CE并延长交DA的延长线于点F.求证:AFAD.
18、(10分)如图,将矩形纸沿着CE所在直线折叠,B点落在B’处,CD与EB’交于点F,如果AB=10cm,AD=6cm,AE=2cm,求EF的长。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)定义运算“”:a*b=a-ab,若,,a*b,则x的值为_________.
20、(4分)若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).
21、(4分)化简:=__.
22、(4分)如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:
①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)
23、(4分)我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____
二、解答题(本大题共3个小题,共30分)
24、(8分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程(米)与小明出发的时间(秒)的函数图象,请根据题意解答下列问题.
(1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;
(2)求小亮跑步的速度及小亮在途中等候小明的时间;
(3)求小亮出发多长时间第一次与小明相遇?
25、(10分)如图,是边长为的等边三角形.
(1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.
(2)当时,求的值.
(3)求的面积与之间的函数关系式.是的一次函数吗?
26、(12分)分解因式:2x2﹣12x+1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.
考点:多边形的内角和公式.
2、A
【解析】
点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.
【详解】
解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9
∴CD=9-4=5
∴△ABC的面积S= AB×BC=×4×5=10
故选A.
本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.
3、D
【解析】
根据方差的性质即可判断.
【详解】
∵丁的方差最小,故最稳定,
选D.
此题主要考查方差的应用,解题的关键是熟知方差的性质.
4、C
【解析】
将各数化简即可求出答案.
【详解】
解:A.原式,故A不是负数;
B.原式,故B不是负数;
C. 是负数;
D.原式,故D不是负数;
故选:C.
本题考查正数与负数,解题的关键是将原数化简,本题属于基础题型.
5、B
【解析】
根据矩形的对角线的性质可得△AOB为等边三角形,由等边三角形的性质即可求出AB的值.
【详解】
∵ABCD是矩形,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB为等边三角形,
∵BD=6,
∴AB=OB=3,
故选:B.
本题考查了矩形的性质、等边三角形的判定与性质,熟练掌握矩形的性质,证明三角形是等边三角形是解题的关键.
6、B
【解析】
A选项中,因为,所以A中计算错误;
B选项中,因为,所以B中计算正确;
C选项中,因为,所以C中计算错误;
D选项中,因为,所以D中计算错误.
故选B.
7、A
【解析】
作EM⊥AF,则AM=FM,利用相似三角形的性质,构建方程求出AM即可解决问题.
【详解】
解:如图中,作EM⊥AF,则AM=FM,
∵AE=EB=EF,
∴∠EAF=∠EFA,
∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,
∴∠BEC=∠EAF,
∴AF∥EC,
在Rt△ECB中,EC=,
∵∠AME=∠B=90°,∠EAM=∠CEB,
∴△CEB∽△EAM,
∴ ,
∴ ,
,
∴AF=2AM=,
故选A.
本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.
8、C
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得:x+1≥0,解得:x≥﹣1.
故选C.
本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75°、75°或30°、120°.
【解析】
分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可
【详解】
①30°是顶角,则底角= (180°﹣30°)=75°;
②30°是底角,则顶角=180°﹣30°×2=120°.
∴另两个角的度数分别是75°、75°或30°、120°.
故答案是75°、75°或30°、120°.
此题考查等腰三角形的性质,难度不大
10、八
【解析】
360°÷(180°-135°)=8
11、﹣1.
【解析】
解:设D(m,).∵双曲线经过Rt△OAB斜边OA的中点D,∴A(1m,).∵S△OAC=3,∴•(﹣1m)• +k=3,∴k=﹣1.故答案为:﹣1.
点睛:本题考查了反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
12、2
【解析】
根据分式的值为零的条件即可求出答案.
【详解】
解:由题意可知:,
解得:,
故答案为:2;
本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.
13、40
【解析】
根据平移的性质可得CF=BE=5,然后根据平行四边形的面积公式即可解答.
【详解】
由平移的性质可得:CF=BE=5,
∵AB⊥BF,
∴四边形ACFD的面积为:AB·CF=8×5=40,
故答案为40.
本题考查了平移的性质和平行四边形面积公式,掌握平移的性质和平行四边形面积公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)反比例函数的解析式为y1=,一次函数的解析式为 y1=1x+1;(1)﹣1<x<0或x>1;(3)C的坐标(1,0)或(﹣3,0).
【解析】
(1)根据待定系数法,可得函数解析式;
(1)根据一次函数图象在上方的部分是不等式的解,可得答案;
(3)根据面积的和差,可得答案.
【详解】
(1)∵函数y1=的图象过点A(1,4),即4=,
∴k=4,即y1=,
又∵点B(m,﹣1)在y1=上,
∴m=﹣1,
∴B(﹣1,﹣1),
又∵一次函数y1=ax+b过A、B两点,
即 ,
解之得.
∴y1=1x+1.
反比例函数的解析式为y1=,
一次函数的解析式为 y1=1x+1;
(1)要使y1<y1,即函数y1的图象总在函数y1的图象下方,
∴﹣1<x<0或x>1;
(3)如图,直线AB与x轴交点E的坐标(﹣1,0),
∴S△ABC=S△AEC+S△BEC=EC×4+EC×1=2.
∴EC=1,
-1+1=1,-1-1=-3,
∴C的坐标(1,0)或(﹣3,0).
本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,函数与不等式的关系.
15、(1)3600,20;(2)y=55x-800.
【解析】
(1)由函数图象可以直接得出小亮行走的路程是3600米,途中休息了20分钟;
(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;
【详解】
解:(1)由函数图象,得
小亮行走的总路程是3600米,途中休息了50-30=20(分钟).
故答案为:3600,20;(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b,由题意,得
,
解得:
∴当50≤x≤80时,y与x的函数关系式为:y=55x-800;
本题考查了一次函数的应用,解决此类题目最关键的地方是经过认真审题,从中整理出一次函数模型,用一次函数的知识解决此类问题.
16、(1)①EG=EH,理由详见解析;②GH平分∠AGE,理由详见解析;(2)①EG=EH,理由详见解析;②∠AGH=∠HGE+∠C,理由详见解析.
【解析】
(1)①由题意可证四边形GHEF是平行四边形,可得∠GHE=∠GFE,由折叠的性质和平行线的性质可证∠GEF=∠HGE,可得结论;
②由平行线的性质可得∠AGH=∠GHE=∠HGE,即可得结论;
(2)①由折叠的性质可得∠CEF=∠C'EF,∠C=∠C',由平行线的性质可得结论;
②∠AGH=∠HGE+∠C,由三角形的外角性质可得结论.
【详解】
(1)①EG=EH,
理由如下:
如图,
∵四边形ABCD是矩形
∴AD∥BC
∴AF∥BE,且GH∥EF
∴四边形GHEF是平行四边形
∴∠GHE=∠GFE
∵将一矩形纸片ABCD沿着EF折叠,
∴∠1=∠GEF
∵AF∥BE,GH∥EF
∴∠1=∠GFE,∠HGE=∠GEF
∴∠GEF=∠HGE
∴∠GHE=∠HGE
∴HE=GE
②GH平分∠AGE
理由如下:
∵AF∥BE
∴∠AGH=∠GHE,且∠GHE=∠HGE
∴∠AGH=∠HGE
∴GH平分∠AGE
(2)①EG=EH
理由如下,
如图,
∵将△ABC沿EF折叠
∴∠CEF=∠C'EF,∠C=∠C'
∵GH∥EF
∴∠GEF=∠HGE,∠FEC'=∠GHE
∴∠GHE=∠HGE
∴EG=EH
②∠AGH=∠HGE+∠C
理由如下:
∵∠AGH=∠GHE+∠C'
∴∠AGH=∠HGE+∠C
本题是四边形综合题,考查了矩形的性质,折叠的性质,平行线的性质,平行四边形的判定和性质,熟练运用这些性质进行推理是本题的关键.
17、详见解析.
【解析】
由在▱ABCD中,点E为AB的中点,易证得△AFE≌△BCE (ASA) ,然后由全等三角形的对应边相等得出AF=BC,即可证得结论.
【详解】
证明:∵平行四边形ABCD
∴AD∥BC,AD=BC (平行四边形对边平行且相等).
又∵AD∥BC
∴∠BCF=∠F(两直线平行内错角相等).
∠BAF=∠ABC
∵E为AB中点
在△AFE和△BCE中
∠BCF=∠F
∠BAF=∠ABC
AE=EB
∴△AFE≌△BCE (ASA)
∴AF=BC(全等三角形对应边相等)
∴AF=AD(等量代换)
此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于证明△AFE≌△BCE.
18、
【解析】
首先根据题意证明EF=CF,再作过E作EG⊥CD于G,设EF=CF=x,在Rt△EFG中根据勾股定理求解即可.
【详解】
解:根据题意,∠CEF=∠CEB,
∵AB∥CD,
∴∠CEB=∠ECD,
∴∠CEF∠ECD,
∴EF=CF,
过E作EG⊥CD于G,
设EF=CF=x,
则GF=AB-AE-EF=10-2-x=8-x,
在Rt△EFG中,EF2=GF2+EG2,
∴x2=(8-x)2+62,
∴x=,
∴EF=cm.
本题主要考查勾股定理的应用,关键在于设出合适的未知数,根据勾股定理列方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±2
【解析】
先根据新定义得出一元二次方程,求出方程的解即可.
【详解】
解:由题意可得:x+1-(x+1)•x=-3,
-x2=-4,
解得:x=±2,
故答案为:±2
本题考查了解一元二次方程的应用,解此题的关键是能根据已知得出一元二次方程,题目比较新颖,难度适中.
20、=
【解析】
首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.
【详解】
把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,
∵(2ax0+b)2=4a2x02+4abx0+b2,
∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,
∴M=△.
故答案为=.
本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.
21、1
【解析】
利用同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,即可得出答案.
【详解】
解:
=1.
故答案是:1.
考查了分式的加减法,熟练掌握运算法则是解本题的关键.
22、①②③
【解析】
①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;
②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;
③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;
④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.
【详解】
解:①∵函数开口向下,∴,
∵对称轴,,∴;
∵函数与y轴交点在y轴上半轴,∴,
∴;所以①正确;
②∵函数对称轴为,
∴,∴,
∵A(3,0)是函数与x轴交点,对称轴为,
∴函数与x轴另一交点为(-1,0);
∵当时,,
∴,②正确;
③∵函数对称轴为,
∴,
∴将带入可化为:,
∵,不等式左右两边同除a需要不等号变方向,可得:
,
即,此不等式一定成立,所以③正确;
④M(-3,)、N(6,)为函数图象上的两点,
∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,
∴,所以④错误.
故答案为①②③.
本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.
23、(32,48)
【解析】
先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.
【详解】
解:2018是第1009个数,
设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,
当n=31时,n2=961,
当n=32时,n2=1024,
故第1009个数在第32组,
第32组第一个数是961×2+2=1924,
则2018是第+1=48个数,
故A2018=(32,48).
故答案为:(32,48).
此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.
二、解答题(本大题共3个小题,共30分)
24、(1)900,1.5;(2)小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)小亮出发150秒时第一次与小明相遇.
【解析】
(1)观察图象可知小明共跑了900米,用了600秒,根据路程÷时间=速度,即可求出小明的速度;
(2)根据图象先求出小亮超过小明150米时,小明所用的时间,然后据此求出小亮的速度,小明赶上小亮时所用的时间-小亮在等候小明前所用的时间=小亮在途中等候小明的时间,据此计算即可;
(3)设小亮出发t秒时第一次与小明相遇,根据(1)、(2)计算出的小亮和小明的速度列出方程求解即可.
【详解】
解:(1)由图象可得,
在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,
故答案为900,1.5;
(2)当x=500时,y=1.5×500=750,
当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),
故小亮的速度为:750÷(400﹣100)=2.5米/秒,
小亮在途中等候小明的时间是:500﹣400=100(秒),
即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;
(3)设小亮出发t秒时第一次与小明相遇,
2.5t=1.5(t+100),
解得,t=150,
答:小亮出发150秒时第一次与小明相遇.
一元一次方程和一次函数在实际生活中的应用是本题的考点,根据题意读懂图象并熟练掌握“路程=速度×时间”这一等量关系,是解题的关键.
25、(1),是的一次函数,,b=0;(2)x=2;(3),不是的一次函数.
【解析】
(1)根据勾股定理计算h的长,可得结论;
(2)直接将h的值代入可得结论;
(3)根据三角形面积公式计算可得结论.
【详解】
解:(1)因为边上的高也是边上的中线,所以,.在中,由勾股定理得,
即,
所以是的一次函数,且,b=0;
(2)h=时,;x=2;
(3)因为,所以不是的一次函数.
本题主要考查了等边三角形的性质,三角形的面积,一次函数的性质,能灵活应用这些性质是解题的关键.
26、2(x﹣3)2.
【解析】
原式提取公因式后,利用完全平方公式分解即可.
【详解】
原式=2(x2﹣6x+9)
=2(x﹣3)2.
此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
统计量
甲
乙
丙
丁
方差
0.60
0.62
0.50
0.44
相关试卷
这是一份陕西省西安市西北工大附中九级2024年数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市碑林区西北工大附中2025届数学九上开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届陕西省西安交通大附中九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。