终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山西省高平市特立中学2024年数学九上开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    山西省高平市特立中学2024年数学九上开学复习检测模拟试题【含答案】第1页
    山西省高平市特立中学2024年数学九上开学复习检测模拟试题【含答案】第2页
    山西省高平市特立中学2024年数学九上开学复习检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省高平市特立中学2024年数学九上开学复习检测模拟试题【含答案】

    展开

    这是一份山西省高平市特立中学2024年数学九上开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)用反证法证明命题“在中,若,则”时,可以先假设( )
    A.B.C.D.
    2、(4分)将方程x2+4x+1=0配方后,原方程变形为( )
    A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣5
    3、(4分)若一个三角形的三边长为,则使得此三角形是直角三角形的的值是( )
    A.B.C.D.或
    4、(4分)已知关于x的方程的一个根为,则m的值为( )
    A.B.C.D.
    5、(4分)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是( )
    A.点FB.点EC.点AD.点C
    6、(4分)下列调查中,适合采用普查的是( )
    A.了解一批电视机的使用寿命
    B.了解全省学生的家庭1周内丢弃塑料袋的数量
    C.了解某校八(2)班学生每天用于课外阅读的时间
    D.了解苏州市中学生的近视率
    7、(4分)不等式5+2x <1的解集在数轴上表示正确的是( ).
    A.B.C.D.
    8、(4分)如图,一棵高为16m的大树被台风刮断.若树在地面6m处折断,则树顶端落在离树底部( )处.
    A.5mB.7mC.7.5mD.8m
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知A(﹣1,1),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____
    10、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.
    11、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
    12、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
    13、(4分)在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.
    (1)如图1,求证:;
    (2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
    (3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
    15、(8分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.
    16、(8分)如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.
    (1)若,判断是否为奇异三角形,并说明理由;
    (2)若,,求的长;
    (3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.
    17、(10分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.

    18、(10分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.
    (1)求的值.
    (2)若的面积为.
    ①求点的坐标.
    ②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出
    符合条件的所有点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:_______.
    20、(4分)如图,在四边形ABCD中,分别为线段上的动点(含端点,但点M不与点B重合),E、F分别为的中点,若,则EF长度的最大值为______.
    21、(4分)已知直线过点和点,那么关于的方程的解是________.
    22、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.
    23、(4分)计算· (a≥0)的结果是_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,
    求∠DAE的度数.
    25、(10分)阅读下面的解答过程,然后答题:已知a为实数,化简:
    解:原式 ①

    (1)上述解答是否有错误?
    (2)若有错误,从第几步开始出现错误?
    (3)写出正确的解答过程。
    26、(12分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.
    (1)求,两点的坐标;
    (2)在给定的坐标系中画出该函数的图象;
    (3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据反证法的第一步是假设结论不成立进而解答即可.
    【详解】
    解:用反证法证明命题“△ABC中,若∠A>∠B+∠C,则∠A>90°”时,应先假设∠A≤90°.
    故选:B.
    本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
    2、A
    【解析】
    配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    【详解】
    ∵x2+4x+1=0,
    ∴x2+4x=−1,
    ∴x2+4x+4=−1+4,
    ∴(x+2) 2=3.
    故选:A.
    此题考查解一元二次方程-配方法,掌握运算法则是解题关键
    3、D
    【解析】
    根据勾股定理即可求解.
    【详解】
    当4为斜边时,x=
    当x为斜边是,x=
    故选D.
    此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.
    4、A
    【解析】
    把x=﹣1代入方程可得关于m的方程,解方程即得答案.
    【详解】
    解:∵x=﹣1是方程的一个根,∴,解得:.
    故选:A.
    本题考查了一元二次方程的解的概念和简单的方程的解法,属于基础题型,熟知一元二次方程的解的定义是关键.
    5、A
    【解析】
    分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.
    详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,
    而2014÷8=251……6,
    所以当电子甲虫爬行2014cm时停下,它停的位置是F点.
    故选A.
    点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    6、C
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、了解一批电视机的使用寿命适合抽样调查;
    B、了解全省学生的家庭1周内丢弃塑料袋的数量适合抽样调查;
    C、了解某校八(2)班学生每天用于课外阅读的时间适合全面调查;
    D、了解苏州市中学生的近视率适合抽样调查;
    故选C.
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.
    7、C
    【解析】
    先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
    【详解】
    5+1x<1,
    移项得1x<-4,
    系数化为1得x<-1.
    故选C.
    本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
    8、D
    【解析】
    首先设树顶端落在离树底部xm,根据勾股定理可得62+x2=(16-6)2,再解即可.
    【详解】
    设树顶端落在离树底部xm,由题意得:
    62+x2=(16-6)2,
    解得:x1=8,x2=-8(不符合题意,舍去).
    所以,树顶端落在离树底部8m处.
    故选:D.
    此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    点A(﹣1,1)关于x轴对称的点A'(﹣1,﹣1),求得直线A'B的解析式,令y=0可求点P的横坐标.
    【详解】
    解:点A(﹣1,1)关于x轴对称的点A'(﹣1,﹣1),
    设直线A'B的解析式为y=kx+b,
    把A'(﹣1,﹣1),B(2,3)代入,可得
    ,解得,
    ∴直线A'B的解析式为,
    令y=0,则,
    解得x=,
    ∴点P的坐标为(,0),
    故答案为:(,0).
    本题综合考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
    10、
    【解析】
    在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.
    【详解】
    解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,
    ∴AB=2CD=1.
    ∴BC===.
    故答案为:.
    本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.
    11、或或
    【解析】
    由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
    【详解】
    解:∵∠C=90°,∠A=30°,BC=9,
    ∴∠B=60°,AB=2BC=18,
    ①当∠BQP=90°时,如图1所示:则AC∥PQ,
    ∴∠BPQ=30°,BP=2BQ,
    ∵BP=18-3t,BQ=t,
    ∴18-3t=2t,
    解得:t=;
    ②当∠QPB=90°时,如图2所示:
    ∵∠B=60°,
    ∴∠BQP=30°,
    ∴BQ=2BP,
    若0<t<6时,
    则t=2(18-3t),
    解得:t=,
    若6<t≤9时,
    则t=2(3t-18),
    解得:t=;
    故答案为:或或.
    本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
    12、1.
    【解析】
    设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
    【详解】
    解:设A(m,),则B(﹣mk,),设AB交y轴于M.
    ∵EM∥BC,
    ∴AM:MB=AE:EC=1:1,
    ∴﹣m:(﹣mk)=1:1,
    ∴k=1,
    故答案为1.
    本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
    13、1.
    【解析】
    可设小林的体重是xkg,根据平均数公式列出方程计算即可求解.
    【详解】
    解:设小林的体重是xkg,依题意有
    x+2(x+6)=42×3,
    解得x=1.
    故小林的体重是1kg.
    故答案为:1.
    考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)见解析;(2)见解析;(3)见解析.
    【解析】
    (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
    (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
    (3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.
    【详解】
    (1)在中,为的中点,
    ∴.
    同理,在中,.
    ∴.
    (2)如图②,(1)中结论仍然成立,即EG=CG.
    理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
    ∴∠AMG=∠DMG=90°.
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.
    在△DAG和△DCG中,

    ∴△DAG≌△DCG(SAS),
    ∴AG=CG.
    ∵G为DF的中点,
    ∴GD=GF.
    ∵EF⊥BE,
    ∴∠BEF=90°,
    ∴∠BEF=∠BAD,
    ∴AD∥EF,
    ∴∠N=∠DMG=90°.
    在△DMG和△FNG中,

    ∴△DMG≌△FNG(ASA),
    ∴MG=NG.
    ∵∠DA∠AMG=∠N=90°,
    ∴四边形AENM是矩形,
    ∴AM=EN,
    在△AMG和△ENG中,

    ∴△AMG≌△ENG(SAS),
    ∴AG=EG,
    ∴EG=CG;
    (3)如图③,(1)中的结论仍然成立.
    理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.
    ∵MF∥CD,
    ∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°
    ∵FN⊥AB,
    ∴∠FNH=∠ANF=90°.
    ∵G为FD中点,
    ∴GD=GF.
    在△MFG和△CDG中

    ∴△CDG≌△MFG(AAS),
    ∴CD=FM.MG=CG.
    ∴MF=AB.
    ∵EF⊥BE,
    ∴∠BEF=90°.
    ∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,
    ∴∠NFH=∠EBH.
    ∵∠A=∠ANF=∠AMF=90°,
    ∴四边形ANFQ是矩形,
    ∴∠MFN=90°.
    ∴∠MFN=∠CBN,
    ∴∠MFN+∠NFE=∠CBN+∠EBH,
    ∴∠MFE=∠CBE.
    在△EFM和△EBC中

    ∴△EFM≌△EBC(SAS),
    ∴ME=CE.,∠FEM=∠BEC,
    ∵∠FEC+∠BEC=90°,
    ∴∠FEC+∠FEM=90°,
    即∠MEC=90°,
    ∴△MEC是等腰直角三角形,
    ∵G为CM中点,
    ∴EG=CG,EG⊥CG.
    考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
    15、4
    【解析】
    首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
    【详解】
    设△ABP中AB边上的高是h.
    ∵S矩形ABCD=3S△PAB,
    ∴AB•h=AB•AD,
    ∴h= AD=2,
    ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
    在Rt△ABE中,∵AB=4,AE=2+2=4,
    ∴BE=,
    即PA+PB的最小值为4.
    故答案为:4.
    本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
    16、(1)是,理由见解析;(2);(3)
    【解析】
    (1)根据奇异三角形的概念直接进行判断即可.
    (2)根据勾股定理以及奇异三角形的概念直接列式进行计算即可.
    (3)根据△ABC是奇异三角形,且b=2,得到,由题知:AD=CD=1,且BC=BD=a,根据△ADB是奇异三角形,则或,分别求解即可.
    【详解】
    (1)∵, ,
    ∴,

    即△ABC是奇异三角形.
    (2)∵∠C=90°,



    ,

    解得:.
    (3)∵△ABC是奇异三角形,且b=2

    由题知:AD=CD=1,BC=BD=a
    ∵△ADB是奇异三角形,且,
    ∴或
    当时,
    当时,与矛盾,不合题意.
    考查勾股定理以及奇异三角形的定义,读懂题目中奇异三角形的定义是解题的关键.
    17、
    【解析】
    试题分析:先根据菱形对角线互相垂直平分求得OA、OB的值,根据勾股定理求得AB的值,由菱形面积公式的两种求法列式可以求得高DH的长.
    试题解析:
    解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,
    ∴AC⊥BD,OA= AC=4cm,OB= BD=3cm,
    ∴Rt△AOB中,AB===5,
    ∵DH⊥AB,
    ∵菱形ABCD的面积S= AC•BD=AB•DH,
    ×6×8=5DH,
    ∴DH=.
    点睛:本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.
    18、(1)4;(2)①点的坐标为.②、、
    【解析】
    (1)利用待定系数法将A点代入,即可求函数解析式的k值;
    (2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;
    (3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.
    【详解】
    (1)函数的图象经过点,

    (2)①如图,设AC与BD交与M,
    点的横坐标为,点在的图象上,
    点的坐标为.
    ∵轴,轴,
    ,.
    ∵的面积为,



    点的坐标为.
    ②∵C(1,0)
    ∴AC=4
    当以ACZ作为平行四边形的边时,BE=AC=4


    ∴、
    当AC作为平行四边形的对角线时,AC中点为
    ∴BE中点为(1,2)设E(x,y)
    ∵点的坐标为

    解得:

    综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、
    故答案为、、
    本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.
    【详解】
    原式

    故答案为:2.
    本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.
    20、1
    【解析】
    连接、,根据勾股定理求出,根据三角形中位线定理解答.
    【详解】
    解:连接、,
    在中,,
    点、分别为、的中点,

    由题意得,当点与点重合时,最大,
    的最大值是4,
    长度的最大值是1,
    故答案为:1.
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    21、
    【解析】
    观察即可知关于的方程的解是函数中y=0时x的值.
    【详解】
    解:∵直线过点
    ∴当y=0时x=-3
    即的解为x=-3
    故答案为:
    本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
    22、7.2
    【解析】
    试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
    解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,
    ∴BC2=AB2+AC2,
    ∴∠A=90°,
    ∵MD⊥AB,ME⊥AC,
    ∴∠A=∠ADM=∠AEM=90°,
    ∴四边形ADME是矩形,
    ∴DE=AM,
    当AM⊥BC时,AM的长最短,
    根据三角形的面积公式得:AB×AC=BC×AM,
    ∴6×1=10AM,
    AM=4.1(cm),
    即DE的最小值是4.1cm.
    故答案为4.1.
    考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.
    23、4a
    【解析】
    【分析】根据二次根式乘法法则进行计算即可得.
    【详解】
    =
    =
    =4a,
    故答案为4a.
    【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、20°
    【解析】
    试题分析:首先根据三角形内角和定理求出∠BAC的度数,然后根据角平分线的性质得出∠EAC的度数,然后根据Rt△ADC的内角和定理求出∠DAC的度数,从而得出∠DAE的度数.
    试题解析:∵∠B=36°,∠C=76° ∴∠BAC=68° ∵AE平分∠BAC ∴∠EAC=68°÷2=34°
    ∵AD是高线 ∴∠DAC=90°-76°=14° ∴∠DAE=∠EAC-∠DAC=34°-14°=20°.
    考点:角度的计算
    25、(1)有错误;(2)①;(3)
    【解析】
    观察已知代数式,要使二次根式有意义,则,a≠0,-a3≥0,即a<0,考虑将两个二次根式写成最简二次根式的形式;
    将 变形为 、 变形为 ,对其进行约分;
    接下来对所得式子进行整理,即可得到本题的答案.
    【详解】
    (1)有错误
    (2)①
    (3)
    本题主要考查了二次根式性质与化简,注意a是负数,不能改变符号.
    26、(1)点A的坐标为, 点B的坐标为 (2)图形见解析(3)
    【解析】
    试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.
    试题解析:
    (1)令,则;
    令,则.
    ∴点A的坐标为,
    点B的坐标为.
    (2)如图:
    (3)
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年山西省高平市数学九上开学质量检测试题【含答案】:

    这是一份2024年山西省高平市数学九上开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西省高平市特立中学数学九上开学检测模拟试题【含答案】:

    这是一份2024-2025学年山西省高平市特立中学数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省晋城高平市2023-2024学年九上数学期末复习检测模拟试题含答案:

    这是一份山西省晋城高平市2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,空地上等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map