内蒙古赤峰市翁牛特旗2024年数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份内蒙古赤峰市翁牛特旗2024年数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,AB=8,,则CG的长是( )
A.2B.3C.4D.5
2、(4分)若函数y=xm+1+1是一次函数,则常数m的值是( )
A.0B.1C.﹣1D.﹣2
3、(4分)如图,在中,,,,分别是和的中点,则( )
A.B.C.D.
4、(4分)已知一个多边形的内角和等于它的外角和,则这个多边形的边数为
A.3 B.4 C.5 D.6
5、(4分)当x=3时,函数y=-2x+1的值是( )
A.3B.-5C.7D.5
6、(4分)设,a在两个相邻整数之间,则这两个整数是( )
A.1和2B.2和3C.3和4D.4和5
7、(4分)某商品降价后欲恢复原价,则提价的百分数为( ).
A.B.C.D.
8、(4分)下列平面图形中,不是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.
10、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
11、(4分)已知一个函数的图象与反比例函数的图象关于轴对称,则这个函数的表达式是__________.
12、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.
13、(4分)一次函数(k,b为常数,)的图象如图所示,根据图象信息可得到关于x的方程的解为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解一元二次方程:(1);(2).
15、(8分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD.求∠BDC的度数.
16、(8分)某学生本学期6次数学考试成绩如下表所示:
(1)6次考试成绩的中位数为 ,众数为 .
(2)求该生本学期四次月考的平均成绩.
(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?
17、(10分)(1)计算:
(1)化简求值:,其中x=1.
18、(10分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图 1,等腰直角四边形 ABCD,AB=BC,∠ABC=90°.
图 1
①若 AB=CD=1,AB∥CD,求对角线 BD 的长.
②若 AC⊥BD,求证:AD=CD;
(2) 如图 2,矩形 ABCD 的长宽为方程 -14x+40=0 的两根,其中(BC >AB),点 E 从 A 点出发,以 1 个单位每秒的速度向终点 D 运动;同时点 F 从 C 点出发,以 2 个单位每秒的速度向终点 B 运动,当点 E、F 运动过程中使四边形 ABFE 是等腰直角四边形时,求 EF 的长.
图 2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在▱ABCD中,,,则______.
20、(4分) 的计算结果是___________.
21、(4分)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于________米.
22、(4分)分解因式:___________.
23、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上,作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标.
25、(10分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来 =
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。
(3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。
26、(12分)学完三角形的高后,小明对三角形与高线做了如下研究:如图,是中边上的-点,过点、分别作、、、,垂足分别为点、、,由与的面积之和等于的面积,有等量关系式:.像这种利用同一平面图形的两种面积计算途径可以得出相关线段的数量关系式,从而用于解决数学问题的方法称为“等积法”,下面请尝试用这种方法解决下列问题.
图(1) 图(2)
(1)如图(1), 矩形中,,,点是上一点,过点作,,垂足分别为点、,求的值;
(2)如图(2),在中,角平分线、相交于点,过点分别作、,垂足分别为点、,若,,求四边形的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由角平分线和平行四边形的性质可得出AD=DG,故CG=CD-DG=AB-AD,代入数值即可得解.
【详解】
解:∵平行四边形ABCD,
∴CD=AB=8,CD∥AB,
∴∠DGA=∠GAB,
∵AG平分∠BAD
∴∠DAG =∠GAB,
∴∠DAG=∠DGA
∴AD=DG
∴CG=CD-DG=AB-AD=8-5=3
故选:B
本题考查的是作图-基本作图,熟知平行四边形的性质、平行线的性质是解决问题的关键.
2、A
【解析】
根据一次函数解析式y=kx+b(k≠0,k、b是常数)的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.可得m+1=1,解方程即可.
【详解】
由题意得:m+1=1,
解得:m=0,
故选A.
此题考查一次函数的定义,解题关键在于掌握其定义
3、A
【解析】
根据三角形的中位线即可求解.
【详解】
∵分别是和的中点,
∴EF是△ABC的中位线,
∴EF=BC=2cm
故选A.
此题主要考查中位线的性质,解题的关键是熟知三角形中位线的定义与性质.
4、B
【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,
∴这个多边形是四边形.
故选B.
考点:多边形内角与外角.
视频
5、B
【解析】
把x=3代入解析式进行计算即可得.
【详解】
当x=3时,
y=-2x+1=-2×3+1=-5,
故选B.
本题考查了求函数值,正确把握求解方法是解题的关键.
6、C
【解析】
首先得出的取值范围,进而得出-1的取值范围.
【详解】
∵,
∴,
故,
故选C.
此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
7、C
【解析】
解:设原价为元,提价百分数为,则,解得,故选.
8、A
【解析】
试题分析:根据轴对称图形的定义作答.
如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.
故选A.
考点:轴对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.
【详解】
作AE⊥BC,
因为
所以,AE=AB=×4 =2.
所以,平行四边形的面积=BC×AE=5x2=10.
故答案为10
本题考核知识点:直角三角形. 解题关键点:熟记含有30〬角的直角三角形的性质.
10、x<1
【解析】
观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.
【详解】
由图象可知,当x<1时,有kx+6>x+b,
当x>1时,有kx+6<x+b,
所以,填x<1
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、
【解析】
直接根据平面直角坐标系中,关于y轴对称的特点得出答案.
【详解】
解:∵反比例函数的图象关于y轴对称的函数x互为相反数,y不变,
∴,
故答案为:.
本题考查反比例函数与几何变换,掌握关于y轴对称时,y不变,x互为相反数是解题关键.
12、
【解析】
四个数任取两个有6种可能.要使图象在第四象限,则kAB,
∴AB=4,BC=10.
根据题意,当AB=AE和AB=BF时,四边形ABFE是等腰直角四边形;
当AB=AE时,如图,连接EF,过F作FG⊥AE,交AE于点G:
∴AB=AE=4,四边形ABFG是矩形,
∴运动的时间为:,
∴CF=,
∴BF=2=AG,
∴GE=2,GF=AB=4,
由勾股定理得:EF=;
当AB=BF时,如图,连接EF,过点E作EH⊥BF,交BF于点H:
∴AB=BF=4,
∴CF=10-4=6,
则运动的时间为:,
∴AE=3,EH=AB=4
∴FH=4-3=1,
由勾股定理得:EF=;
故EF的长度为:或.
本题考查四边形综合题、矩形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
先证明是等腰直角三角形,再由勾股定理求出AD,即可得出BC的长.
【详解】
四边形ABCD是平行四边形,
,,,
,,
即是等腰直角三角形,
,
故答案为:.
本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明是等腰直角三角形是解决问题的关键.
20、3.5
【解析】
原式=4-=3=3.5,
故答案为3.5.
21、6
【解析】
由菱形花坛ABCD的周长是24米,∠BAD=60°,可求得边长AD的长,AC⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.
【详解】
解:∵菱形花坛ABCD的周长是24米,∠BAD=60°,
∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=6米,
∴OA=AD•cs30°=6×=3米,
∴AC=2OA=6米.
故答案为:6.
此题考查了菱形的性质以及三角函数的应用.熟知菱形的对角线互相垂直且平分是解此题的关键.
22、ab(a+b)(a﹣b).
【解析】
分析:先提公因式ab,再把剩余部分用平方差公式分解即可.
详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).
点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.
23、8 P1(0,-4),P2(-4,-4),P3(4,4)
【解析】
解:如图
∵△AOE的面积为4,函数y=的图象过一、三象限,
∴S△AOE=•OE•AE=4,
∴OE•AE=8,
∴xy=8,
∴k=8,
∵函数y=2x和函数y=的图象交于A、B两点,
∴2x=,
∴x=±2,
当x=2时,y=4,当x=-2时,y=-4,
∴A、B两点的坐标是:(2,4)(-2,-4),
∵以点B、O、E、P为顶点的平行四边形共有3个,
∴满足条件的P点有3个,分别为:
P1(0,-4),P2(-4,-4),P3(4,4).
故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).
本题考查反比例函数综合题.
二、解答题(本大题共3个小题,共30分)
24、C1的坐标为:(﹣3,﹣2)
【解析】
直接利用关于原点对称点的性质得出各对应点位置进而得出答案.
【详解】
如图所示:△A1B1C1,即为所求,点C1的坐标为:(﹣3,﹣2).
此题主要考查了旋转变换,正确得出对应点位置是解题关键.
25、(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.
【解析】
(1)以AD为公共边,有∠ABD=∠ACD;
(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;
(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.
【详解】
解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;
(2)四边形ACEF为正方形,理由是:
∵∠ABC=90°,BD平分∠ABC,
∴∠ABD=∠CBD=45°
∴∠DAC=∠CBD=45°
∵四边形ACEF是菱形,
∴AELCF,
∴∠ADC=90°,
∴△ADC是等腰直角三角形,
∴AD=CD,.AE=CF,
∴菱形ACEF是正方形;
(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,
∵∠DBG=45°,
∴△BDG是等腰直角三角形,BD=4,
∵BG=4,四边形ACEF是正方形,
∴AC=CE,∠ACE=90°,AD=DE,
易得△ABC≌△CHE,
∴CH=AB=3,AB//DG//EH,AD=DE,
∴BG=GH=4,
∴CG=4-3=1,
∴BC=BG+CG=4+1=5.
本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.
26、(1);(2)4
【解析】
(1)由矩形的性质可得∠ABC=90°,AO=CO,BO=DO,由“等积法”可求解;
(2)由“等积法”可求OM=ON=1,通过证明四边形AMON是正方形,即可求解.
【详解】
解:(1)如图,连接,
则由矩形性质有:
又
∴
∴
解得:;
(2)连接,过点作,垂足为点,
又是的角平分线,、,垂足分别为点、,
,
在中,
设,则
解得:
四边形是矩形
又
矩形是正方形
正方形的周长.
本题考查了矩形的性质,正方形的判定,熟练掌握“等积法”是本题的关键
题号
一
二
三
四
五
总分
得分
批阅人
成绩类别
第一次月考
第二次月考
期中
第三次月考
第四次月考
期末
成绩/分
105
110
108
113
108
112
相关试卷
这是一份2025届内蒙古赤峰市翁牛特旗乌丹六中学九年级数学第一学期开学教学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年内蒙古自治区赤峰市翁牛特旗第一中学九年级数学第一学期开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年内蒙古自治区赤峰市翁牛特旗乌丹第三中学九年级数学第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。