江西省宜春市高安市2025届数学九上开学监测模拟试题【含答案】
展开
这是一份江西省宜春市高安市2025届数学九上开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)平行四边形不一定具有的性质是( )
A.对角线互相垂直B.对边平行且相等C.对角线互相平分D.对角相等
2、(4分)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是( )
A.向左平移1个单位,再向下平移1个单位
B.向左平移个单位,再向上平移1个单位
C.向右平移个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位
3、(4分)如图,在中,,,则的度数是( )
A.B.C.D.
4、(4分)△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是 ( )
A.54B.44C.54或44D.54或33
5、(4分)一副三角板按图 1 所示的位置摆放,将△DEF 绕点 A(F)逆时针旋转 60°后(图 2), 测得 CG=8cm,则两个三角形重叠(阴影)部分的面积为()
A.16+16 cm2
B.16+ cm2
C.16+ cm2
D.48cm2
6、(4分)不列调查方式中,最合适的是( )
A.调查某品牌电脑的使用寿命,采用普查的方式
B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式
C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式
D.调查苏州地区初中学生的睡眠时间,采用普查的方式
7、(4分)下列多项式能用完全平方公式进行分解因式的是( )
A.B.
C.D.
8、(4分)如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为( )
A.50°B.25°C.15°D.20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.
10、(4分)已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.
11、(4分)一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.
12、(4分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为__.
13、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.
(1)求证:四边形ADCE是平行四边形;
(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.
15、(8分)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.
(1)求第一批套尺购进时单价是多少?
(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?
16、(8分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)四边形AFCD是什么特殊的四边形?请说明理由.
(2)填空:
①若AB=AC,则四边形AFCD是_______形.
②当△ABC满足条件______时,四边形AFCD是正方形.
17、(10分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.
(1)求点的坐标;
(2)求一次函数和反比例函数的表达式.
18、(10分)解方程:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,点P(–2,–3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
20、(4分)已知,函数y=(k-1)x+k2-1,当k________时,它是一次函数.
21、(4分)如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.
22、(4分)如图,在平行四边形中,,,,则______.
23、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
25、(10分)某开发公司生产的960件新产品,需要精加工后,才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元.
(1)求甲、乙两个工厂每天各能加工多少件新产品.
(2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费. 请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.
26、(12分)先化简,再求值: [其中,]
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
结合平行四边形的性质即可判定。
【详解】
结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.
故选A.
本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键。
2、D
【解析】
过B作射线,在上截取,则四边形是平行四边形,过B作于H.
【详解】
,
.
,
,
,则四边形是菱形.
因此平移点A到点C,向右平移1个单位,再向上平移1个单位得到.
故选D.
本题考查的知识点是四边形的应用,解题关键是划对辅助线进行作答.
3、B
【解析】
由三角形内角和得到∠CBD的度数,由AD∥BC即可得到答案.
【详解】
解:∵,,
∴∠CBD=180°-50°-55°=75°,
在中,AD∥BC,
∴∠ADB=∠CBD=75°.
故选择:B.
本题考查了三角形内角和,平行线的性质,解题的关键是熟练掌握三角形内角和与平行线的性质.
4、C
【解析】
根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.
【详解】
(1)
在直角三角形ACD中,有
在直角三角形ADB中,有
则CB=CD+DB=5+16=21
所以三角形的面积为CB+AC+AB=21+13+20=54.
(2)
在直角三角形ACD中,有
在直角三角形ADB中,有
则CB=DB -CD =16-5=11
所以三角形的面积为CB+AC+AB=11+13+20=44.
故答案为:D.
本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.
5、B
【解析】
过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.
【详解】
解:过G点作GH⊥AC于H,如图,
∠GAC=60°,∠GCA=45°,GC=8cm,
在Rt△GCH中,GH=CH=GC=4cm,
在Rt△AGH中,AH=GH=cm,
∴AC=AH+CH=+4(cm).
∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2
故选:B.
本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.
6、B
【解析】
本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
A. 调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;
B. 调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;
C. 要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;
D. 调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;
故选B
此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来
7、C
【解析】
利用完全平方公式的结构特征判断即可得到结果.
【详解】
解:A选项为偶次方和1的和,不能因式分解;
B选项不能因式分解;
C选项x2-2x+1=(x-1)2,可以因式分解;
D选项不能因式分解.
故选C.
本题题考查了因式分解一运用公式法,熟练掌握完全平方公式以及因式分解的概念是解本题的关键.
8、B
【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.
【详解】
在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PMAB,PNDC,PM∥AB,PN∥DC.
∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.
∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN25°.
故选B.
本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、甲
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:由于S2甲<S乙2,
则成绩较稳定的演员是甲.
故答案为甲.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、
【解析】
首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.
【详解】
解:共有10个数据,其中6~7的频率是1÷10=0.1;
8~9的频率是6÷10=0.3;
10~11的频率是8÷10=0.4;
11~13的频率是4÷10=0.1.
故答案为.
本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.
11、8.
【解析】
根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.
【详解】
∵数据2,6,,10,8的平均数是6,
∴
∴x=4,
∴这组数据的方差是.
考点: 1.方差;2.平均数.
12、 (-3,1)
【解析】
直接利用已知点坐标得出原点的位置进而得出答案.
【详解】
解:如图所示:“兵”的坐标为:(-3,1).
故答案为(-3,1).
本题考查坐标确定位置,正确得出原点位置是解题关键.
13、三
【解析】
根据在第二象限中,横坐标小于0,纵坐标大于0,所以-n<0,m<0,再根据每个象限的特点,得出点B在第三象限,即可解答.
【详解】
解:∵点A(m,n)在第二象限,
∴m<0,n>0,
∴-n<0,m<0,
∵点B(-n,m)在第三象限,
故答案为三.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
试题分析:
(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;
(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.
试题解析:
(1)∵AE∥BC,
∴∠AEF=∠DBF,∠EAF=∠FDB,
∵点F是AD的中点,
∴AF=DF,
∴△AFE≌△DFB,
∴ AE=CD,
∵AD是△ABC的中线,
∴DC=AD,
∴AE=DC,
又∵AE∥BC,
∴四边形 ADCE是平行四边形;
(2)∵BE平分∠AEC,
∴∠AEB=∠CEB,
∵AE∥BC,
∴∠AEB=∠EBC,
∴∠CEB=∠EBC,
∴EC=BC,
∵由(1)可知,AD=EC,BD=DC=AE,
∴AD=BC,
又∵AF=DF,
∴AF=DF=BD=DC=AE,
即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.
15、(1)1
(1)
【解析】
(1)设第一批套尺购进时单价是x元/套,则设第二批套尺购进时单价是元/套,根据题意可得等量关系:第二批套尺数量﹣第一批套尺数量=100套,根据等量关系列出方程即可;
(1)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.
【详解】
(1)设第一批套尺购进时单价是x元/套.
由题意得:,
解得:x=1.
经检验:x=1是所列方程的解.
答:第一批套尺购进时单价是1元/套;
(1)(元).
答:商店可以盈利1900元.
分式方程的应用.
16、 (1)平行四边形,理由见解析; (2)①矩形,②AB=AC,∠BAC=1.
【解析】
(1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;
(2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;
②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.
【详解】
解:(1)平行四边形
理由如下:∵AF∥BC
∴∠AFE=∠DBE,
在ΔAFE与△DBE中
∴ΔAFE≌ΔDBE
∴AF=BD,
又BD=CD
∴AF=CD
又AF∥CD
∴四边形AFCD是平行四边形;
(2)①∵AB=AC,AD是BC边上的中线
∴AD⊥BC,且四边形AFCD是平行四边形
∴四边形AFCD是矩形;
②当△ABC满足AB=AC,∠BAC=1°条件时,四边形AFCD是正方形.
理由为:∵AB=AC,∠BAC=1°,AD是BC边上的中线
∴AD=CD=BD,AD⊥BC
∵四边形AFCD是平行四边形,AD⊥BC
∴四边形AFCD是矩形,且AD=CD
∴四边形AFCD是正方形.
故答案为:(1)平行四边形,理由见解析; (2)①矩形,②AB=AC,∠BAC=1.
本题考查正方形的判定,平行四边形的判定以及全等三角形的判定与性质、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.
17、(1);(2).
【解析】
(1)利用,可以就可以求出A点的坐标
(2)利用A,B的坐标求出一次函数的解析式,然后利用C点坐标求出反比例函数的表达式。
【详解】
解:(1),
而,
,
点坐标为;
(2)点坐标为,
把、代入得,即得,
一次函数解析式为;
把代入得,
点坐标为,
,
反比例函数解析式为
此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.
18、x=2
【解析】
解:
两边同乘(x-4),得
3-x+1=x-4
x=2
检验:当x=2时,x-4≠0
∴x=2是原分式方程的解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、C
【解析】
应先判断出点P的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点P的横坐标-2<0,纵坐标为-3<0,
∴点P(-2,-3)在第三象限.
故选:C.
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
20、k≠1.
【解析】
分析:
由一次函数的定义进行分析解答即可.
详解:
∵函数y=(k-1)x+k2-1是一次函数,
∴,解得:.
故答案为:.
点睛:熟记:一次函数的定义:“形如的函数叫做一次函数”是解答本题的关键.
21、3
【解析】
根据角平分线上的点到角的两边的距离相等求解即可.
【详解】
解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,
∴PE=PD=3cm.
故答案为;3
本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.
22、
【解析】
根据平行四边形的性质可得AB=10,BC=AD=6,由BC⊥AC,根据勾股定理求得AC的长,即可求得OA长,再由勾股定理求得OB的长,即可求得BD的长.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,OB=OD,OA=OC,
∵AC⊥BC,
∴AC==8,
∴OC=4,
∴OB==2,
∴BD=2OB=4
故答案为:4.
本题考查了平行四边形的性质以及勾股定理,熟练运用平行四边形的性质及勾股定理是解决本题的关键.
23、1
【解析】
先求出体育优秀的占总体的百分比,再乘以360°即可.
【详解】
解:圆心角的度数是:
故答案为:1.
本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
先把二次根式化简,然后合并同类二次根式,再做乘法并化简求得结果。
【详解】
解:原式
本题考查了二次根式的混合运算,熟练掌握计算法则是关键。
25、 (1)甲、乙两个工厂每天各能加工16和24件.(2)合作.
【解析】
解:(1)设甲工厂每天能加工件产品,
则乙工厂每天能加工件产品,根据题意,得
26、
【解析】
分析:先化简,再把代入化简后的式子进行运算即可.
详解:
,
当x=时,
原式=
点睛:本题考查了分式的化简求值.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江西省宜春市丰城市2025届数学九上开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省高安市吴有训实验学校2024-2025学年九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江西省宜春市高安市高安中学数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。