开学活动
搜索
    上传资料 赚现金

    江西省临川二中学、崇仁二中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】

    江西省临川二中学、崇仁二中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】第1页
    江西省临川二中学、崇仁二中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】第2页
    江西省临川二中学、崇仁二中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省临川二中学、崇仁二中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】

    展开

    这是一份江西省临川二中学、崇仁二中学2024-2025学年九年级数学第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若,则等于( )
    A.B.C.2D.
    2、(4分)下列各式正确的是( )
    A.= ±3 B.= ±3 C.=3 D.=-3
    3、(4分)若,则的值是( )
    A.B.C.D.
    4、(4分) 小马虎在下面的计算中只作对了一道题,他做对的题目是( )
    A.B.a3÷a=a2
    C.D.=﹣1
    5、(4分)一个图形,无论是经过平移变换,还是经过旋转变换,下列说法都能正确的是( )
    ①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等
    A.①②③B.①③④C.①②④D.②③④
    6、(4分)如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是( )
    A.25cmB.20cmC.28cmD.30cm
    7、(4分)不等式-2x>1的解集是( )
    A.x<-B.x<-2C.x>-D.x>-2
    8、(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形是边长为4的正方形,点E在边上,PE=1;作EF∥BC,分别交AC、AB于点G、F,M、N分别是AG、BE的中点,则MN的长是_________.
    10、(4分)如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.
    11、(4分)若,则____.
    12、(4分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为_______.
    13、(4分)如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,E,F分别是OA和OC的中点.
    (1)求证:DE=BF.
    (2)求证:四边形BFDE是平行四边形.
    15、(8分)解方程:
    (1);(2).
    16、(8分)(问题情境)
    如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
    (探究展示)
    (1)直接写出AM、AD、MC三条线段的数量关系: ;
    (2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
    (拓展延伸)
    (3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
    17、(10分)解方程:
    (1)x2﹣4x=1
    (2)
    18、(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
    (1)画出关于轴对称的;
    (2)画出将绕原点逆时针旋转90°所得的;
    (3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
    20、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
    21、(4分)正五边形的内角和等于______度.
    22、(4分)请写出的一个同类二次根式:________.
    23、(4分)已知是实数,且和都是整数,那么的值是________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)观察下列各式子,并回答下面问题.
    第一个:
    第二个:
    第三个:
    第四个:…
    (1)试写出第个式子(用含的表达式表示),这个式子一定是二次根式吗?为什么?
    (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
    25、(10分)蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题: :
    (1)根据上表填空: __,=. ,= .
    (2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?
    (3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?
    26、(12分)已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.
    求证:四边形CEDF是正方形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由可得利用进行化简即可.
    【详解】
    解:∵





    故答案为:A
    本题考查了二次根式的性质,正确运用公式进行化简是解题的关键.
    2、C
    【解析】
    根据二次根式的性质化简即可.
    【详解】
    解:A.= 3,不符合题意;
    B.= 3,不符合题意;
    C.==3 ,C符合题意;
    D.==3,不符合题意.
    故选C.
    本题考查了二次根式的性质与化简.熟练掌握二次根式的性质是解答本题的关键.
    3、B
    【解析】
    解:
    故选:B.
    本题考查同分母分式的加法运算.
    4、B
    【解析】
    A.;
    B.;
    C.;
    D..
    故选B.
    5、D
    【解析】
    根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.
    【详解】
    解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;
    ②无论平移还是旋转,对应线段相等,故本小题正确;
    @无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;
    ④无论平移还是旋转,对应角相等,故本小题正确.
    综上所述,说法正确的②③④.故选D.
    本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.
    6、C
    【解析】
    只要证明AD=DE=5cm,即可解决问题.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD=BC=5cm,CD=AB,
    ∴∠EAB=∠AED,
    ∵∠EAB=∠EAD,
    ∴∠DEA=∠DAE,
    ∴AD=DE=5cm,
    ∵EC=4cm,
    ∴AB=DC=9cm,
    ∴四边形ABCD的周长=2(5+9)=28(cm),
    故选C.
    本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    7、A
    【解析】
    根据解一元一次不等式基本步骤系数化为1可得.
    【详解】
    解:两边都除以-2,得:x<-,
    故选:A.
    本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
    8、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项正确;
    C、不是轴对称图形,是中心对称图形,故此选项错误;
    D、不是轴对称图形,是中心对称图形,故此选项错误.
    故选B.
    考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2.5
    【解析】
    先判断四边形的形状,再连接,利用正方形的性质得出是等腰直角三角形,再利用直角三角形的性质得出即可.
    【详解】
    ∵四边形 是边长为4的正方形, ,
    ∴四边形是矩形,
    ∵,
    ∴,
    连接,如图所示:
    ∵四边形是正方形,
    ∴ ,是等腰直角三角形,
    ∵是的中点,即有 ,
    ∴,是直角三角形,
    又∵是中点,,

    ∴,
    故答案为: .
    本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.
    10、2或4
    【解析】
    根据题意分两种情况,分别画出图形,证明△是等边三角形,根据直角三角形的性质求出OD,即可得到答案.
    【详解】
    若绕点D顺时针旋转△AED得到△,连接,
    ∵,,
    ∴∠A=30°,
    ∵,
    ∴AB=4,
    ∵点D是AB的中点,
    ∴AD=2,
    ∵,
    ∴AD==2,∠=60°,
    ∴△是等边三角形,
    ∴=,∠D=60°,且∠EAD=30°,
    ∴AE平分∠D,
    ∴AE是的垂直平分线,
    ∴OD=AD=,
    ∵AE=DE,
    ∴∠EAD=∠EDA=30°,
    ∴DE,
    ∴2;
    若绕点D顺时针旋转△AED得到△,
    同理可求=4,
    故答案为:2或4.
    此题考查旋转的性质,直角三角形30°角所对的直角边等于斜边一半的性质,等边三角形的判定及性质,三角函数.
    11、1
    【解析】
    由a+b-1ab=0得a+b.
    【详解】
    解:由a+b-1ab=0得a+b=1ab,
    =1,
    故答案为1.
    本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键.
    12、1
    【解析】
    先根据勾股定理求出BD,进而判断出△BCD是直角三角形,最后用面积的和即可求出四边形ABCD的面积.
    【详解】
    如图,连接BD,
    在Rt△ABD中,AB=3,DA=4,
    根据勾股定理得,BD=5,
    在△BCD中,BC=12,CD=13,BD=5,
    ∴BC2+BD2=122+52=132=CD2,
    ∴△BCD为直角三角形,
    ∴S四边形ABCD=S△ABD+S△BCD
    =AB∙AD+BC∙BD
    =×3×4+×12×5
    =1
    故答案为:1.
    此题主要考查了勾股定理及逆定理,三角形的面积公式,解本题的关键是判断出△BCD是直角三角形.
    13、
    【解析】
    首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.
    【详解】
    解:∵A(﹣2,0),
    ∴OA=2,
    ∵∠DAB=60°,OP⊥AD,
    ∴∠AOP=30°,
    ∴AP=1,
    ∴OP=,
    作PE⊥y轴,
    ∵∠POA=30°,
    ∴∠OPE=30°,
    ∴OE=
    ∴PE=,
    ∴点P到y轴的距离为,
    故答案为:.
    考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析.
    【解析】
    (1)根据平行四边形的判定和性质即可得到结论;
    (2)根据平行四边形的判定和性质即可得到结论.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴BO=OD,AO=OC,
    又∵E,F分别为AO,OC的中点,
    ∴EO=OF,
    ∴四边形BFDE是平行四边形,
    ∴DE=BF;
    (2)∵四边形ABCD是平行四边形,
    ∴BO=OD,AO=OC,
    又∵E,F分别为AO,OC的中点,
    ∴EO=OF,
    ∴四边形BFDE是平行四边形.
    本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
    15、(2)原方程无解;(2)x= 2
    【解析】
    根据去分母,去括号转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (2)解:方程两边同乘(x-2),得3x+2=2.解这个方程,得x=2.
    经检验:x=2是增根,舍去,所以原方程无解。
    (2)解:方程两边同乘(x2),得2x=x22.
    解这个方程,得x= 2.
    经检验:x= 2是原方程的解.
    此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要注意验根.
    16、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
    【解析】
    (1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
    (2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
    (3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
    【详解】
    解:(1)证明:延长AE、BC交于点N,如图1(1),
    ∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
    ∴∠ENC=∠MAE.∴MA=MN.
    ∴△ADE≌△NCE(AAS)
    ∴AD=NC.∴MA=MN=NC+MC=AD+MC.
    (2)AM=DE+BM成立.
    证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
    ∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
    ∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
    ∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
    ∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
    ∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
    (3)①结论AM=AD+MC仍然成立.
    证明:延长AE、BC交于点P,如图2(1),
    ∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
    ∴∠EPC=∠MAE.∴MA=MP.
    ∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
    ②结论AM=DE+BM不成立.
    证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
    ∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
    ∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
    ∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
    =∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
    ∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
    ∴AM=DE+BM不成立.
    本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
    17、(1)x1=2+,x2=2﹣;(2)原方程无解.
    【解析】
    (1)首先采用凑完全平方公式的原则,凑成完全平方式,在求解.
    (2)采用分式方程的求解方法求解即可.
    【详解】
    解:(1)∵x2﹣4x+4=1+4,
    ∴(x﹣2)2=5,
    则x﹣2=±,
    ∴x1=2+,x2=2﹣;
    (2)方程两边同时乘以(x+2)(x﹣2)得:
    (x﹣2)2﹣(x+2)(x﹣2)=16,
    解得:x=﹣2,
    检验:当x=﹣2时,(x+2)(x﹣2)=0,
    ∴x=﹣2是原方程的增根,
    ∴原方程无解.
    本题主要考查分式方程和完全平方式方程的解法,关键在于凑和分式方程的分母的增根检验.
    18、(1)见解析;(2)见解析;(3)能,图见解析;
    【解析】
    (1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
    (2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
    (3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
    【详解】
    (1)如图所示:
    (2)如图所示:
    (3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
    此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
    【详解】
    ∵2=1×2,∴F(2)=,故(1)是正确的;
    ∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
    ∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
    ∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
    故答案为2.
    本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
    20、1.
    【解析】
    根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
    【详解】
    ∵菱形ABCD的顶点C(-1,0),点B(0,2),
    ∴点A的坐标为(-1,4),点D坐标为(-2,2),
    ∵D(n,2),
    ∴n=-2,
    当y=4时,-x+5=4,
    解得x=2,
    ∴点A向右移动2+1=3时,点A在MN上,
    ∴m的值为3,
    ∴m+n=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
    21、540
    【解析】
    过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
    ∴正五边形的内角和=3180=540°
    22、
    【解析】
    试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).
    考点:1.同类二次根式;2.开放型.
    23、
    【解析】
    根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
    【详解】
    由题意设m+=a(a为整数),=b(b为整数),
    ∴m=a-,
    ∴=b,
    整理得:

    ∴b2-8=1,8a-ab2=-b,
    解得:b=±3,a=±3,
    ∴m=±3-.
    故答案为​±3-.
    本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
    二、解答题(本大题共3个小题,共30分)
    24、(1),该式子一定是二次根式,理由见解析;(2)在15和16之间.理由见解析.
    【解析】
    (1)依据规律可写出第n个式子,然后判断被开方数的正负情况,从而可做出判断;
    (2)将代入,得出第16个式子为,再判断即可.
    【详解】
    解:(1),
    该式子一定是二次根式,
    因为为正整数,,所以该式子一定是二次根式
    (2)
    ∵,,
    ∴.
    ∴在15和16之间.
    本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.
    25、(1);(2);(1)24.
    【解析】
    (1)根据频数、频率、总数之间的关系一一解决问题即可;
    (2)根据中位数的定义即可判断;
    (1)用样本估计总体的思想解决问题即可.
    【详解】
    解:(1)9÷0.18=50(人).
    a=50×0.06=1,m=50﹣(9+21+1+2)=15,b=15÷50=0.1.
    故答案为:1,0.1,15;
    (2)共有50名学生,中位数是第25、26个数据的平均数,第25、26个数据在第1组,所以小青的测试成绩在70≤x<80范围内;
    (1)×600=24(人).
    答:共有24名学生被选拔参加决赛.
    本题考查频数分布直方图、样本估计总体的思想、频数分布表、中位数的定义等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.
    26、证明见解析
    【解析】
    试题分析:证明有三个角是直角是矩形,再证明一组邻边相等.
    试题解析:
    ∵CD平分∠ACB,DE⊥BC,DF⊥AC,
    ∴DE=DF,∠DFC=90°,∠DEC=90°
    又∵∠ACB=90°,
    ∴四边形DECF是矩形,
    ∴矩形DECF是正方形.
    点睛:证明正方形
    (1)对角线相等的菱形是正方形.
    (2)对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形.
    (3)四边相等,有三个角是直角的四边形是正方形.
    (4)一组邻边相等的矩形是正方形.
    (5)一组邻边相等且有一个角是直角的平行四边形是正方形.
    (6)四边均相等,对角线互相垂直平分且相等的平行四边形是正方形.
    题号





    总分
    得分
    组别
    分组
    频数
    频率
    1
    9
    0.18
    2
    3
    21
    0.42
    4
    0.06
    5
    2

    相关试卷

    江西省临川二中学、崇仁二中学2024-2025学年九上数学开学调研模拟试题【含答案】:

    这是一份江西省临川二中学、崇仁二中学2024-2025学年九上数学开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省抚州市临川二中学、崇仁二中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份江西省抚州市临川二中学、崇仁二中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省临川二中学、崇仁二中学2023-2024学年九上数学期末考试模拟试题含答案:

    这是一份江西省临川二中学、崇仁二中学2023-2024学年九上数学期末考试模拟试题含答案,共7页。试卷主要包含了下列结论中,错误的有,下列图案中,是中心对称图形的是,如图,△∽△,若,,,则的长是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map