年终活动
搜索
    上传资料 赚现金

    江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】

    立即下载
    加入资料篮
    江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】第1页
    江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】第2页
    江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】

    展开

    这是一份江西省赣州市会昌县2024-2025学年九上数学开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,,垂直平分线段于点,的平分线交于点,连接,则等于( )
    A.B.C.D.
    2、(4分)下列代数式变形正确的是( )
    A.B.
    C.D.
    3、(4分)八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是( )
    A.列表法B.图象法
    C.解析式法D.以上三种方法均可
    4、(4分)在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是( )
    A.①②③④B.①②③C.①④D.②③
    5、(4分)把中根号外的(a-1)移入根号内,结果是( )
    A.B.C.D.
    6、(4分)在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是( )
    A.测量对角线是否互相平分
    B.测量两组对边是否分别相等
    C.测量一组对角是否为直角
    D.测量两组对边是否相等,再测量对角线是否相等
    7、(4分)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )
    A.B.
    C.D.
    8、(4分)用配方法解方程时,原方程应变形为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若反比例函数y=(2k-1)的图象在二、四象限,则k=________.
    10、(4分)函数中,自变量x的取值范围是_____.
    11、(4分)若矩形的边长分别为2和4,则它的对角线长是__.
    12、(4分)将直线y=2x-3向上平移5个单位可得______直线.
    13、(4分)若关于x的分式方程有增根,则a的值为_______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:
    (1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?
    15、(8分)先化简,再求值:÷(x﹣),其中x=+1.
    16、(8分)(1)计算
    (2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
    解方程
    解:方程两边乘,得第一步
    解得 第二步
    检验:当时,.
    所以,原分式方程的解是 第三步
    小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
    17、(10分)把下列各式因式分解:
    (1)(x2﹣9)+3x(x﹣3)
    (2)3ax2+6axy+3ay2
    18、(10分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.
    (1)小亮行走的总路程是______m,他途中休息了______min,休息后继续行走的速度为______m/min;
    (2)当时,求y与x的函数关系式;
    (3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式:________.
    20、(4分)已知,则的值等于__________.
    21、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
    22、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
    23、(4分)函数自变量的取值范围是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
    (1)求证:△BDF是等腰三角形;
    (2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
    ①判断四边形BFDG的形状,并说明理由;
    ②若AB=6,AD=8,求FG的长.
    25、(10分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.
    (1)如图一,当点O在RtΔABC内部时.
    ①按题意补全图形;
    ②猜想DE与BC的数量关系,并证明.
    (2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.

    26、(12分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
    (1)求A,B两型桌椅的单价;
    (2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;
    (3)求出总费用最少的购置方案.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由直角三角形的性质可得∠ABD的度数,然后由BE平分可求得∠EBC的度数,再根据线段垂直平分线的性质和等腰三角形的性质可得答案.
    【详解】
    解:∵垂直平分线段,
    ∴∠ADB=90°,EB=EC,
    ∵,
    ∴∠ABD=50°,
    ∵BE是的平分线,
    ∴∠EBC=∠ABD=25°,
    ∵EB=EC,∴∠C=∠EBC=25°.
    故选A.
    本题考查了直角三角形两锐角互余的性质、角平分线的概念、线段垂直平分线的性质和等腰三角形的性质,知识点虽多但难度不大,属于基础题型.
    2、D
    【解析】
    利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.
    【详解】
    解:A.,故本选项变形错误;
    B. ,故本选项变形错误;
    C.,故本选项变形错误;
    D.,故本选项变形正确,
    故选D.
    本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.
    3、B
    【解析】
    列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
    【详解】
    解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,
    故选:B.
    本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.
    4、A
    【解析】
    连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.
    【详解】
    连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,
    ∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
    ∴∠ADE+∠EDC=90°,
    ∵∠EDC+∠FDC=∠GDH=90°,
    ∴∠ADE=∠CDF.
    在△ADE和△CDF中,
    ∴△ADE≌△CDF(ASA),
    ∴AE=CF,DE=DF,S△ADE=S△CDF.
    ∵AC=BC,
    ∴AC-AE=BC-CF,
    ∴CE=BF.
    ∵AC=AE+CE,
    ∴AC=AE+BF.
    ∵DE=DF,∠GDH=90°,
    ∴△DEF始终为等腰直角三角形.
    ∵CE1+CF1=EF1,
    ∴AE1+BF1=EF1.
    ∵S四边形CEDF=S△EDC+S△EDF,
    ∴S四边形CEDF=S△EDC+S△ADE=S△ABC.
    ∴正确的有①②③④.
    故选A.
    本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.
    5、C
    【解析】
    先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.
    【详解】
    ∵要是根式有意义,必须-≥0,
    ∴a-1<0,
    ∴(a-1)=-,
    故选C.
    本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.
    6、D
    【解析】
    根据矩形和平行四边形的判定推出即可得答案.
    【详解】
    A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;
    B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;
    C、根据一组对角是否为直角不能得出四边形的形状,故本选项错误;
    D、根据对边相等可得出四边形是平行四边形,根据对角线相等的平行四边形是矩形可得出此时四边形是矩形,故本选项正确;
    故选D.
    本题考查的是矩形的判定定理,矩形的判定定理有①有三个角是直角的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角是直角的平行四边形是矩形.牢记这些定理是解题关键.
    7、A
    【解析】
    解:将矩形木框立起与地面垂直放置时,形成B选项的影子;
    将矩形木框与地面平行放置时,形成C选项影子;
    将木框倾斜放置形成D选项影子;
    根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.
    故选A.
    8、A
    【解析】
    先将常数项移到右侧,然后在方程两边同时加上一次项一半的平方,左侧配方即可.
    【详解】

    x2-4x=9,
    x2-4x+4=9+4,

    故选A.
    本题考查了配方法,正确掌握配方法的步骤以及注意事项是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.
    【详解】
    解:根据题意,3k2-2k-1=-1,2k-1<1,
    解得k=1或k=且k<,
    ∴k=1.
    故答案为1.
    本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.
    10、x≠1
    【解析】
    根据分母不等于0,可以求出x的范围;
    【详解】
    解:(1)x-1≠0,解得:x≠1;
    故答案是:x≠1,
    考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    11、2.
    【解析】
    根据矩形的性质得出∠ABC=90°,AC=BD,根据勾股定理求出AC即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,
    在Rt△ABC中,AB=2,BC=4,由勾股定理得:AC=,

    故答案为:
    本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.
    12、y=1x+1
    【解析】
    根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.
    【详解】
    解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,
    那么新直线的k=1,b=-3+5=1.
    ∴新直线的解析式为y=1x+1.
    故答案是:y=1x+1.
    此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.
    13、3
    【解析】
    先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.
    【详解】

    去分母得2-(x-a)=7(x-5)
    把x=5代入得2-(5-a)=0,解得a=3
    故填:3.
    此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.
    三、解答题(本大题共5个小题,共48分)
    14、(1)S甲=0.5t;S乙=t﹣6;(2)甲行驶10分钟后,甲、乙两人相距1千米;
    【解析】
    分析:设出函数解析式,用待定系数法求解即可.
    代入中的函数解析式即可求出.
    详解:(1)由图象设甲的解析式为:S甲=kt,代入点,解得:k=0.5;
    所以甲的解析式为:S甲=0.5t;
    同理可设乙的解析式为:S乙=mt+b,代入点
    可得:
    解得: ,
    所以乙的解析式为S乙
    (2)当t=10时,S甲=0.5×10=5(千米),S乙=10-6=4(千米),
    5-4=1(千米),
    答:甲行驶10分钟后,甲、乙两人相距1千米.
    点睛:考查一次函数的应用,掌握待定系数法求一次函数解析式是解题的关键.
    15、.
    【解析】
    先算括号里面的,再算除法,把分式化为最简公式,把x的值代入进行计算即可
    【详解】
    原式=

    = ,
    当x= +1时,原式=.
    此题考查分式的化简求值,掌握运算法则是解题关键
    16、(1);(2)一 ,
    【解析】
    (1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
    【详解】
    解:(1)
    =
    =
    =
    =
    (2)小刚的解法从第一步开始出现错误
    解方程
    解:方程两边乘,得
    解得
    检验:当时,.
    所以,原分式方程的解是
    故答案为:一 ,
    本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
    17、 (1) (x﹣3)(4x+3);(1) 3a(x+y)1.
    【解析】
    (1)原式利用平方差公式变形,再提取公因式即可;
    (1)原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    (1)原式=(x+3)(x﹣3)+3x(x﹣3)=(x﹣3)(4x+3);
    (1)原式=3a(x1+1xy+y1)=3a(x+y)1.
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    18、(1)3600,20,1;(2)y=1x-2;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是1100m.
    【解析】
    (1)观察函数图象,可找出小亮行走的总路程及途中休息的时间,再利用速度=路程÷时间可求出小亮休息后继续行走的速度;
    (2)观察图象,找出点的坐标,利用待定系数法即可求出:当50≤x≤80时,y与x的函数关系式;
    (3)利用小颖到达终点所用的时间=乘坐缆车的总路程÷缆车的平均速度可求出小颖到达终点所用的时间,用其加上50可求出小颖到达终点时小亮所用时间,再利用小亮离缆车终点的路程=小亮休息后继续行走的速度×(到达终点的时间-小颖到达终点时小亮所用时间)即可求出结论.
    【详解】
    解:(1)观察函数图象,可知:小亮行走的总路程是3600m,
    小亮途中休息的时间为:50-30=20(min),
    休息后继续行走的速度为:(3600-1950)÷(80-50)=1(m/min).
    故答案为:3600;20;1.
    (2)设当50≤x≤80时,y与x的函数关系式为y=kx+b(k≠0),
    由图象知:点(50,1950)与点(80,3600)在直线上,
    ∴,解得:,
    ∴当50≤x≤80时,y与x的函数关系式为y=1x-2.
    (3)小颖到达终点所用的时间为12÷180=10(分钟),
    ∴小颖到达终点时小亮已用时50+10=60(分钟),
    ∴小亮离缆车终点的路程为1×(80-60)=1100(m).
    答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100m.
    本题考查了待定系数法求一次函数解析式以及一次函数的图象,解题的关键是:(1)观察函数图象,找出各数据;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)根据数量关系,列式计算.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (a+1)(a-1)
    【解析】
    根据平方差公式分解即可.
    【详解】
    (a+1)(a-1).
    故答案为:(a+1)(a-1).
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    20、3
    【解析】
    将已知的两式相乘即可得出答案.
    【详解】
    解:∵

    ∴的值等于3.
    本题主要考查了因式分解的解法:提公因式法.
    21、1
    【解析】
    根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
    【详解】
    由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
    故答案为:1.
    考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
    22、.
    【解析】
    设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
    【详解】
    解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
    ∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
    ∴∠OAD=∠BOE,
    同理可得∠AOD=∠OBE,
    在△AOD和△OBE中, ,
    ∴△AOD△OBE(ASA),
    ∵点B在第四象限,
    ∴,即,
    解得,
    ∴反比例函数的解析式为:.
    故答案为.
    本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
    23、
    【解析】
    根据分式与二次根式的性质即可求解.
    【详解】
    依题意得x-9>0,
    解得
    故填:.
    此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)①菱形,见解析;②.
    【解析】
    (1)根据两直线平行内错角相等及折叠特性判断;
    (2)①根据已知矩形性质及第一问证得邻边相等判断;
    ②根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    (1)证明:如图1,根据折叠,∠DBC=∠DBE,
    又AD∥BC,
    ∴∠DBC=∠ADB,
    ∴∠DBE=∠ADB,
    ∴DF=BF,
    ∴△BDF是等腰三角形;
    (2)①∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴FD∥BG,
    又∵DG∥BE
    ∴四边形BFDG是平行四边形,
    ∵DF=BF,
    ∴四边形BFDG是菱形;
    ②∵AB=6,AD=8,
    ∴BD=10.
    ∴OB= BD=5.
    假设DF=BF=x,∴AF=AD−DF=8−x.
    ∴在直角△ABF中,AB+AF=BF,即6+(8−x) =x,
    解得x= ,
    即BF=,
    ∴FO=,
    ∴FG=2FO=
    此题考查四边形综合题,解题关键在于利用勾股定理进行计算.
    25、 (1)①补全图形,如图一,见解析;②猜想DE=BC. 证明见解析;(2) ∠AED=30°或15°.
    【解析】
    (1)①根据要求画出图形即可解决问题.
    ②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.
    (2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.
    【详解】
    (1)①补全图形,如图一,
    ②猜想DE=BC.
    如图,连接OD交BC于点F,连接AF
    在△BDF和△COF中,
    ∴△BDF≌ΔCOF
    ∴DF=OF,BF=CF
    ∴F分别为BC和DO的中点
    ∵∠BAC=90°,F为BC的中点,
    ∴AF=BC.
    ∵OA=AE,F为BC的中点,
    ∴AF=ED.
    ∴DE=BC
    (2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,
    ∵AB=AC,
    ∴AF垂直平分线段BC,
    ∴MB=MC,∵∠OCB=30°,∠OBC=15°,
    ∴∠MBC=∠MCB=30°,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,
    ∵∠BAM=∠BOM=45°,BM=BM,
    ∴△BMA≌△BMO(AAS),
    ∴AM=OM,∠BMO=∠BMA=120°,
    ∴∠AMO=120°,
    ∴∠MAO=∠MOA=30°,
    ∴∠AED=∠MAO=30°.
    如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,
    ∴∠MAO=∠MBO=30°-15°=15°,
    ∵DE∥AM,
    ∴∠AED=∠MAO=15°,
    综上所述,满足条件的∠AED的值为15°或30°.
    本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    26、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.
    【解析】
    (1)根据“2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元”,建立方程组即可得出结论;
    (2)根据题意建立函数关系式,由A型桌椅不少于120套,B型桌椅不少于70套,确定出x的范围;
    (3)根据一次函数的性质,即可得出结论.
    【详解】
    (1)设A型桌椅的单价为a元,B型桌椅的单价为b元,
    根据题意知,,
    解得,,
    即:A,B两型桌椅的单价分别为600元,800元;
    (2)根据题意知,y=600x+800(200﹣x)+200×10=﹣200x+162000(120≤x≤130),
    (3)由(2)知,y=﹣200x+162000(120≤x≤130),
    ∴当x=130时,总费用最少,
    即:购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.
    本题考查一次函数的应用,二元一次方程的应用,一元一次不等式组的应用,读懂题意,列出方程组或不等式是解本题的关键.
    题号





    总分
    得分

    相关试卷

    江西省赣州市章贡区2025届数学九上开学联考试题【含答案】:

    这是一份江西省赣州市章贡区2025届数学九上开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】:

    这是一份江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省赣州市赣州七中学2024-2025学年数学九上开学统考模拟试题【含答案】:

    这是一份江西省赣州市赣州七中学2024-2025学年数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map