江西省赣州赣县区联考2024年九上数学开学检测模拟试题【含答案】
展开这是一份江西省赣州赣县区联考2024年九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,若矩形的对角线长为4,则AD的长是( )
A.2B.4C.2D.4
2、(4分)若代数式在实数范围内有意义,则x的取值范围是( )
A.x≥﹣2B.x>﹣2C.x≥2D.x≤2
3、(4分)抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
A.1个B.2个C.3个D.4个
4、(4分)如图,△ABC中,∠C=90°,E、F分别是AC、BC上两点,AE=8,BF=6,点P、Q、D分别是AF、BE、AB的中点,则PQ的长为( )
A.4B.5C.6D.8
5、(4分)小宸同学的身高为,测得他站立在阳光下的影长为,紧接着他把手臂竖直举起,测得影长为,那么小宸举起的手臂超出头顶的高度为( )
A.B.C.D.
6、(4分)如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=( )
A.5cmB.cmC.cmD.cm
7、(4分)下列分解因式正确的是( )
A.B.
C.D.
8、(4分)一次函数分别交轴、轴于,两点,在轴上取一点,使为等腰三角形,则这样的点最多有几个( )
A.5B.4C.3D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为 .
10、(4分)已知a2-2ab+b2=6,则a-b=_________.
11、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,若∠ADB=36°,则∠E=_____°.
12、(4分)分解因式:x2﹣7x=_____.
13、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________
三、解答题(本大题共5个小题,共48分)
14、(12分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程(米)与小明出发的时间(秒)的函数图象,请根据题意解答下列问题.
(1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;
(2)求小亮跑步的速度及小亮在途中等候小明的时间;
(3)求小亮出发多长时间第一次与小明相遇?
15、(8分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.
(1)求直线AB的解析式;
(2)求证:△PAO≌△MPN;
(3)若PB=m(m>0),用含m的代数式表示点M的坐标;
(4)求直线MB的解析式.
16、(8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).
①作∠DAC的平分线AM;
②连接BE并延长交AM于点F;
③连接FC.
(2)猜想与证明:猜想四边形ABCF的形状,并说明理由.
17、(10分)七年级某班体育委员统计了全班同学 60 秒垫排球次数,并列出下列频数分布表:
(1)全班共有 名同学;
(2)垫排球次数 x 在 20≤x<40 范围的同学有 名,占全班人数的 %;
(3)若使垫排球次数 x 在 20≤x<40 范围的同学到九年级毕业时占全班人数的 87.12%,则八、九年级平均每年的垫排球次数增长率为多少?
18、(10分)(1)分解因式:a3-2a2b+ab2;
(2)解方程:x2+12x+27=0
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在等腰直角三角形ACD,∠ACD=90°,AC=,分别以边AD,AC,CD为直径面半图,所得两个月形图案AGCE和DHCF的面积之和(图中阴影部分)为_____________.
20、(4分)函数y=的自变量x的取值范围为_____.
21、(4分)如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.
22、(4分)计算:的结果是_____.
23、(4分)正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y=x+2和x轴上,则点∁n的横坐标是_____.(用含n的代数式表示)
二、解答题(本大题共3个小题,共30分)
24、(8分)把下列各式因式分解.
(1)
(2)
25、(10分)如图,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点为圆心,大于二分之一长为半径画弧,两弧交于点,连接并延长交于点,连接.
(1)四边形是__________; (填矩形、菱形、正方形或无法确定)
(2)如图,相交于点,若四边形的周长为,求的度数.
26、(12分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.
(1)点P在x轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过点A(2,-4)且与y轴平行的直线上.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD=4,推出AO=OB=2,得出等边三角形AOB,可得AB=2,由勾股定理可求AD的长.
【详解】
∵四边形ABCD是矩形,
∴AC=2AO,BD=2BO,AC=BD=4,
∴AO=OB=2,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴∠ABO=60°,AB=2=OA
∴
故选:C.
本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.
2、C
【解析】
根据二次根式的性质,被开方数大于等于0,就可以求解.
【详解】
解:根据题意得:x﹣1≥0,
解得:x≥1.
故选:C.
本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.
3、D
【解析】
根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.
【详解】
如图,∵与轴的一个交点坐标为,抛物线的对称轴是,
实验求出二次函数与x轴的另一个交点为(-2,0)
故可补全图像如下,
由图可知a<0,c>0,对称轴x=1,故b>0,
∴,①错误,
②对称轴x=1,故x=-,∴,正确;
③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;
故选D
此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.
4、B
【解析】
利用三角形中位线定理即可作答.
【详解】
∵点P、Q、D分别是AF、BE、AB的中点
∴
∴DQ∥AE,PD∥BF
∵∠C=90°
∴AE⊥BF
∴DQ⊥PD
∴∠PDQ=90°
∴.
故选 B.
本题考查的知识点是勾股定理的运用,解题关键是证得∠PDQ=90°.
5、C
【解析】
根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小刚举起的手臂超出头顶的高度.
【详解】
解:设手臂竖直举起时总高度xm,列方程得:
,
解得:x=2.4,
2.4-1.8=0.6m,
∴小宸举起的手臂超出头顶的高度为0.6m.
故选:C.
本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.
6、C
【解析】
根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=×6×8=1,即可求DH长.
【详解】
由已知可得菱形的面积为×6×8=1.
∵四边形ABCD是菱形,
∴∠AOB=90°,AO=4cm,BO=3cm.
∴AB=5cm.
所以AB×DH=1,即5DH=1,解得DH=cm.
故选:C.
主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.
7、C
【解析】
【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.
【详解】A. ,故A选项错误;
B. ,故B选项错误;
C. ,故C选项正确;
D. =(x-2)2,故D选项错误,
故选C.
【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.
8、B
【解析】
首先根据题意,求得与的坐标,然后利用勾股定理求得的长,再分别从,,去分析求解,即可求得答案.
【详解】
解:当时,,当时,,
,,
,
①当时,,
;
②当时,,,
③当时,设的坐标是,,,
,由勾股定理得:,
解得:,
的坐标是,,
这样的点最多有4个.
故选:B.
此题考查了等腰三角形的性质、一次函数的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、48°
【解析】
试题分析:因为AB∥CD,∠B=68°,所以∠CFE=∠B=68°,又∠CFE=∠D+∠E, ∠E=20°,所以∠D=∠CFE-∠E=68°-20°=48°.
考点:1.平行线的性质2.三角形的外角的性质
10、
【解析】
由题意得(a-b)2="6," 则=
11、18
【解析】
连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=36°,可得∠E度数.
【详解】
解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=36°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=36°,
∴∠E=18°.
故答案为:18
考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
12、x(x﹣7)
【解析】
直接提公因式x即可.
【详解】
解:原式=x(x﹣7),
故答案为:x(x﹣7).
本题主要考查了因式分解的运用,准确进行计算是解题的关键.
13、150,1
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,
则众数为:150,
中位数为:1.
故答案为:150,1
此题考查中位数,众数,解题关键在于掌握其概念
三、解答题(本大题共5个小题,共48分)
14、(1)900,1.5;(2)小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)小亮出发150秒时第一次与小明相遇.
【解析】
(1)观察图象可知小明共跑了900米,用了600秒,根据路程÷时间=速度,即可求出小明的速度;
(2)根据图象先求出小亮超过小明150米时,小明所用的时间,然后据此求出小亮的速度,小明赶上小亮时所用的时间-小亮在等候小明前所用的时间=小亮在途中等候小明的时间,据此计算即可;
(3)设小亮出发t秒时第一次与小明相遇,根据(1)、(2)计算出的小亮和小明的速度列出方程求解即可.
【详解】
解:(1)由图象可得,
在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,
故答案为900,1.5;
(2)当x=500时,y=1.5×500=750,
当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),
故小亮的速度为:750÷(400﹣100)=2.5米/秒,
小亮在途中等候小明的时间是:500﹣400=100(秒),
即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;
(3)设小亮出发t秒时第一次与小明相遇,
2.5t=1.5(t+100),
解得,t=150,
答:小亮出发150秒时第一次与小明相遇.
一元一次方程和一次函数在实际生活中的应用是本题的考点,根据题意读懂图象并熟练掌握“路程=速度×时间”这一等量关系,是解题的关键.
15、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.
【解析】
(3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;
(3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;
(3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.
(4)设直线MB的解析式为y=nx﹣3,根据点M(m+3,﹣m﹣4).然后求得直线MB的解析式.
【详解】
(3)解:设直线AB:y=kx+b(k≠2)
代入A(3,2 ),B (2,﹣3 ),得
,
解得,
∴直线AB的解析式为:y=x﹣3.
(3)证明:作MN⊥y轴于点N.
∵△APM为等腰直角三角形,PM=PA,
∴∠APM=92°.
∴∠OPA+∠NPM=92°.
∵∠NMP+∠NPM=92°,
∴∠OPA=∠NMP.
在△PAO与△MPN中
,
∴△PAO≌△MPN(AAS).
(3)由(3)知,△PAO≌△MPN,则OP=NM,OA=NP.
∵PB=m(m>2),
∴ON=3+m+3=4+m MN=OP=3+m.
∵点M在第四象限,
∴点M的坐标为(3+m,﹣4﹣m).
(4)设直线MB的解析式为y=nx﹣3(n≠2).
∵点M(3+m,﹣4﹣m).
在直线MB上,
∴﹣4﹣m=n(3+m)﹣3.
整理,得(m+3)n=﹣m﹣3.
∵m>2,
∴m+3≠2.
解得 n=﹣3.
∴直线MB的解析式为y=﹣x﹣3.
本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.
16、(1)详见解析;(2)四边形ABCF是平行四边形.
【解析】
(1)利用尺规作出∠DAC的平分线AM即可,连接BE延长BE交AM于F,连接FC;
(2)只要证明△AEF≌△CEB即可解决问题.
【详解】
解:(1)如图所示:
(2)四边形ABCF是平行四边形.
理由如下:
∵AB=AC,
∴∠ABC=∠ACB.
∴∠DAC=∠ABC+∠ACB=2∠ACB.
由作图可知∠DAC=2∠FAC,
∴∠ACB=∠FAC.
∴AF∥BC.
∵点E是AC的中点,
∴AE=CE.
在△AEF和△CEB中, ∠FAE=∠ECB,AE=CE,∠AEF=∠CEB,
∴△AEF≌△CEB(ASA),
∴AF=BC.
又∵AF∥BC,
∴四边形ABCF是平行四边形.
本题考查了角平分线的作法、全等三角形的判定、平行四边形的判定,熟练掌握并灵活运用是解题的关键.
17、(1)50;(2)36,72;(3).
【解析】
(1)由图可知所有的频数之和即为人数;
(2)由图可知,把20≤x<40的两组频数相加即可,然后除以总人数即可得到答案;
(3)先计算到九年级20≤x<40的人数,然后设增长率为m,列出方程,解除m即可.
【详解】
解:(1)全班总人数=1+4+21+15+5+4=50(人),
故答案为:50.
(2)垫排球次数 x 在 20≤x<40 范围的同学有:21+15=36(人);
百分比为:;
故答案为:36,72.
(3)根据题意,设平均每年的增长率为m,则
解得:(舍去),
故八、九年级平均每年的垫排球次数增长率为:.
本题考查了一元二次方程的应用和频数分布表,频数分布表能够表示出具体数字,知道频率=频数÷总数和考查根据图表获取信息的能力,以及增长率的计算.解题的关键是在频数分布表中得到正确的信息.
18、a(a-b)2,x=-3或x=-9.
【解析】
(1)先提取公因式,在运用公式法因式分解即可。
(2)运用因式分解法,即可解方程。
【详解】
解:(1)a3-2a2b+ab2
= a(a2-2ab+b2)
=a(a-b)2
(2) x2+12x+27=0
(x+3)(x+9)=27
即:x+3=0或x+9=0
解得:x=-3或x=-9
本题考查了因式分解及其应用,特别是用因式分解解一元二次方程是常用的方法。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.
【详解】
解:∵△ACD是直角三角形,
∴AC2+CD2=AD2,
∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,
∴S半圆ACD=π•AD2,S半圆AEC=π•AC2,S半圆CFD=π•CD2,
∴S半圆ACD=S半圆AEC+S半圆CFD,
∴所得两个月型图案AGCE和DHCF的面积之和(图中阴影部分)=Rt△ACD的面积=××=1;
故答案为1.
本题考查了勾股定理,等腰直角三角形的性质,掌握定理是解题的关键.
20、x≠1.
【解析】
根据分式有意义的条件,即可快速作答。
【详解】
解:根据分式有意义的条件,得:x-1≠0,即x≠1;故答案为:x≠1。
本题考查了函数自变量的取值范围,但分式有意义的条件是解题的关键。
21、
【解析】
观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.
【详解】
解:不等式x+b≥mx-n的解集为.
故答案为.
本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、1
【解析】
根据算术平方根的定义,直接得出表示21的算术平方根,即可得出答案.
【详解】
解:∵表示21的算术平方根,且
故答案是:1.
此题主要考查了算术平方根的定义,必须注意算术平方根表示的是一个正数的平方等于某个数.
23、
【解析】
观察图像,由直线y=x+2和正方形的关系,即可得出规律,推导出Cn的横坐标.
【详解】
解:根据题意,由图像可知,,
正方形A1B1C1O、 A2B2C2C1
,直线y=x+2的斜率为1,则
以此类推,,
此题主要考查一次函数图像的性质和正方形的关系,推导得出关系式.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)先提取,再利用完全平方公式即可求解;
(2)先化简,再利用完全平方公式和平方差公式即可求解.
【详解】
解:(1)原式
(2)原式
.
此题主要考查因式分解,解题的关键是熟知因式分解的方法.
25、(1)菱形; (2)
【解析】
(1)先根据四边形ABCD是平行四边形得出AD∥BC,再由AB=AF即可得出结论;
(2)先根据菱形的周长求出其边长,再由BF=1得出△ABF是等边三角形,据此可得出结论。
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC.
∵AB=AF,
∴四边形ABEF是菱形.
故答案为:菱形
(2)∵四边形ABEF是菱形,且周长为40,
∴AB=AF=40÷4=1.
∵BF=1,
∴△ABF是等边三角形,
∴∠ABF=60°,
∴∠ABC=2∠ABF=120°;
故答案为:120°
本题考查的是作图-基本作图,熟知角平分线的作法及菱形的性质是解答此题的关键.
26、(1)(6,0);(2)(-12,-9); (3)(2,-2)
【解析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.
试题解析:
(1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);
(2)因为点P的纵坐标比横坐标大3,故(m -1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);
(3) 点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)
题号
一
二
三
四
五
总分
得分
PM2.5指数
150
155
160
165
天 数
3
2
1
1
次数
0≤x<10
10≤x<20
20≤x<30
30≤x<40
40≤x<50
50≤x<60
频数
1
4
21
15
5
4
相关试卷
这是一份江西省赣州市兴国县2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省赣州市2024-2025学年九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省赣州宁都县联考2025届数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。