终身会员
搜索
    上传资料 赚现金

    江苏省镇江市新区2024年数学九年级第一学期开学综合测试模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省镇江市新区2024年数学九年级第一学期开学综合测试模拟试题【含答案】第1页
    江苏省镇江市新区2024年数学九年级第一学期开学综合测试模拟试题【含答案】第2页
    江苏省镇江市新区2024年数学九年级第一学期开学综合测试模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省镇江市新区2024年数学九年级第一学期开学综合测试模拟试题【含答案】

    展开

    这是一份江苏省镇江市新区2024年数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)化简的结果是( )
    A.a-bB.a+bC.D.
    2、(4分)根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是( )
    A.二次函数图像的对称轴是直线x=1;
    B.当x>0时,y<4;
    C.当x≤1时,函数值y是随着x的增大而增大;
    D.当y≥0时,x的取值范围是-1≤x≤3时.
    3、(4分)若代数式有意义,则实数x的取值范围是( )
    A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2
    4、(4分)关于一次函数,下列结论正确的是
    A.图象经过B.图象经过第一、二、三象限
    C.y随x的增大而增大D.图象与y轴交于点
    5、(4分)如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )
    A.()7B.2()7C.2()8D.()9
    6、(4分)下列标志图中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    7、(4分)无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、(4分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( )
    A.y=-x+2B.y=x+2C.y=x-2D.y=-x-2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若点A(﹣2,4)在反比例函数的图像上,则k的值是____.
    10、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
    ④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
    11、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
    12、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
    13、(4分)正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.
    15、(8分)为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图。(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)
    请根据图示,回答下列问题:
    (1)求学生每天户外活动时间的平均数,众数和中位数;
    (2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?
    16、(8分)已知关于的方程
    (1)若请分别用以下方法解这个方程:
    ①配方法;
    ②公式法;
    (2)若方程有两个实数根,求的取值范围.
    17、(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.
    (1)甲的速度是_____km/h;
    (2)当1≤x≤5时,求y乙关于x的函数解析式;
    (3)当乙与A地相距240km时,甲与A地相距_____km.
    18、(10分)有两堆背面完全相同的扑克,第一堆正面分别写有数字1、2、1、4,第二堆正面分别写有数字1、2、1.分别混合后,小玲从第一堆中随机抽取一张,把卡片上的数字作为被减数;小惠从第二堆中随机抽取一张,把卡片上的数字作为减数,然后计算出这两个数的差.
    (1)请用画树状图或列表的方法,求这两数差为0的概率;
    (2)小玲与小惠作游戏,规则是:若这两数的差为非负数,则小玲胜;否则,小惠胜.你认为该游戏规则公平吗?如果公平,请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
    20、(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.
    21、(4分)如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.
    22、(4分)已知方程的一个根为2,则________.
    23、(4分)如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.
    (1)如图1,当点恰好落在边上时,______;
    (2)如图2,若点落在内(包括边界),则的取值范围是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.
    (1)小明一共调查了多少户家庭?
    (2)求所调查家庭3月份用水量的众数、中位数和平均数;
    (3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?
    25、(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
    (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
    (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
    (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
    26、(12分)先化简,再求值:(1﹣)÷,其中x=+1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.
    【详解】

    故选B.
    此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.
    2、B
    【解析】
    试题分析:,
    所以x=1时,y取得最大值4,
    时,y<4,B错误
    故选B.
    考点:二次函数图像
    点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.
    3、D
    【解析】
    试题解析:由题意得,且
    解得且
    故选D.
    4、D
    【解析】
    根据一次函数的性质,依次分析各个选项,选出正确的选项即可.
    【详解】
    A.把x=3代入y=﹣2x+3得:y=﹣6+3=﹣3,即A选项错误;
    B.一次函数y=﹣2x+3的图象经过第一、二、四象限,即B选项错误;
    C.一次函数y=﹣2x+3的图象上的点y随x的增大而减小,即C选项错误;
    D.把x=0代入y=﹣2x+3得:y=3,图象与y轴交于点(0,3),即D选项正确.
    故选D.
    本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.
    5、B
    【解析】
    根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.
    【详解】
    解:∵A0(1,0),
    ∴OA0=1,
    ∴点B1的横坐标为1,
    ∵B1,B2、B3、…、B8在直线y=2x的图象上,
    ∴B1纵坐标为2,
    ∴OA1=OB1=,
    ∴A1(,0),
    ∴B2点的纵坐标为,
    于是得到B3的纵坐标为2…
    ∴B8的纵坐标为2
    故选:B.
    本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.
    6、B
    【解析】
    根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    【详解】
    解:A、不是轴对称图形,是中心对称图形;
    B、是轴对称图形,也是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,也不是中心对称图形.
    故选:B.
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
    7、C
    【解析】
    根据题目中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,
    ∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,
    故选:C.
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    8、B
    【解析】
    解:设一次函数的解析式y=kx+b(k≠0),
    ∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,
    ∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).
    把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b
    得:,解得,
    该一次函数的表达式为y=x+1.
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-8
    【解析】
    把点A(﹣2,4)代入反比例函数即可求解.
    【详解】
    把点A(﹣2,4)代入反比例函数得k=-2×4=-8.
    故答案为-8
    此题主要考查反比例函数的求解,解题的关键是熟知待定系数法确定函数关系式.
    10、①③④
    【解析】
    逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
    解:①根据题意列解方程组,
    解得,;
    ∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
    ②当x>3时,y1在y2的上方,故y1>y2,错误;
    ③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
    ④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
    y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
    因此①③④正确,②错误.
    故答案为①③④.
    本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
    11、
    【解析】
    根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.
    【详解】

    ∵矩形纸片中,,
    现将其沿对折,使得点C与点A重合,点D落在处,
    ∴ ,
    在中,,
    即 解得 ,
    故答案为:.
    本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.
    12、20
    【解析】
    设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
    13、
    【解析】
    分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].
    详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),
    ∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,
    又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,
    ∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).
    故答案为(2n-1,2n-1).
    点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
    三、解答题(本大题共5个小题,共48分)
    14、BD=2;CD=
    【解析】
    过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.
    【详解】
    解:如图,过点D作DE⊥BC于E,
    ∵∠A=90°,AD=AB=,
    ∴由勾股定理可得:
    BD=,
    ∵∠CBD=30°,DEBE,
    ∴DE=BD=×2=1,
    又∵Rt△CDE中,∠DEC=90°,∠C=45°,
    ∴CE=DE=1,
    ∴由勾股定理可得
    CD=.
    本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.
    15、(1)平均数是1.24;众数:1;中位数:1;(2)该校每天户外活动时间超过1小时的学生有5280人.
    【解析】
    分析:(1)根据条形图可得:户外活动的时间分分别为“0.5小时”,“1小时”,“1.5小时”,“2小时”的人数,然后根据平均数,众数和中位数的定义解答即可;(2)先求出500名该县每天户外活动时间超过1小时的初二学生所占的百分比,乘以12000即可.
    详解:(1)观察条形统计图,可知这组样本数据的平均数是:

    则这组样本数据的平均数是1.24小时.
    众数:1小时
    中位数:1小时;
    (2)被抽查的500名学生中,户外活动时间超过1小时的有220人,
    所以 (人)
    ∴该校每天户外活动时间超过1小时的学生有5280人.
    点睛:本题考查的是条形统计图、平均数、众数和中位数的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    16、(1)①,见解析;②,见解析;(2)
    【解析】
    (1)①利用配方法解方程;
    ②先计算判别式的值,然后利用求根公式解方程;
    (2)利用判别式的意义得到△=(-5)2-4×(3a+3)≥0,然后解关于a的不等式即可.
    【详解】
    解:当时,原方程为:
    ∴,
    ∴,
    ∴;

    ∴;
    方程有两个实数根,

    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解一元二次方程.
    17、(1)V甲=60km/h (2)y乙=90x-90 (3)220
    【解析】
    (1)根据图象确定出甲的路程与时间,即可求出速度;
    (2)利用待定系数法确定出y乙关于x的函数解析式即可;
    (3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.
    【详解】
    (1)根据图象得:360÷6=60km/h;
    (2)当1≤x≤5时,设y乙=kx+b,
    把(1,0)与(5,360)代入得: ,
    解得:k=90,b=-90,
    则y乙=90x-90;
    (3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,
    ∴乙用的时间是240÷90=h,
    则甲与A地相距60×(+1)=220km.
    此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.
    18、(1)表见解析,;(2)不公平,修改规则为:两数的差为正数,则小玲胜;否则,小惠胜.(规则不唯一)
    【解析】
    (1)根据题意列表,再根据概率公式列出式子计算即可,
    (2)分别求出这两数的差为非负数的概率和差为负数的概率,得出该游戏规则不公平,再通过修改规则使两数的差为非负数的概率和差为负数的概率相等即可.
    【详解】
    解:(1)列表:
    ∴(两数差为0);
    (2)由(1)可知:
    ∵(差为非负数);
    (差为负数);
    ∴不公平.
    修改规则为:两数的差为正数,则小玲胜;否则,小惠胜.(规则不唯一)
    此题考查了游戏的公平性,用到的知识点是概率公式,概率=所求情况数与总情况数之比,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6
    【解析】
    根据三角形的中位线性质可得,
    20、.
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    解:将88300000用科学记数法表示为:.
    故答案为:.
    此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    21、1cm
    【解析】
    根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.
    【详解】
    解:∵E为△ABC中AB边的中点,
    ∴BE=EA.
    ∵EF∥BC,
    ∴=,
    ∴BF=FC,则EF为△ABC的中位线,
    ∴AC=2EF=1.
    故答案为1.
    本题考查的是三角形中位线定理的运用和平行线分线段成比例定理的运用,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.
    22、
    【解析】
    把x=2代入原方程,得到一个关于k的方程,求解可得答案.
    【详解】
    解:把x=2代入方程3x2+kx-2=0得3×4+2k-2=0,
    解得k=-1.
    故答案为-1.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    23、2;
    【解析】
    (1)根据折叠的性质可得,由此即可解决问题;
    (2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;
    【详解】
    解:(1)∵折叠,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    (2)当落在上时,过点作于点.
    ∵,,
    ∴,
    ∴.
    在中,,
    ∴.
    ∵,
    ∴,
    ∴.
    ∴,
    ∴,
    ∴.
    本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1)20户;(2)众数是4吨,位数是6吨,均数是4.5吨;(3)估计这个小区3月份的总用水量是3600吨.
    【解析】
    分析:(1)、将各组的人数进行相加得出答案;(2)、根据众数、中位数和平均数的计算法则进行计算即可;(3)、利用平均数乘以800得出答案.
    详解:(1)、小明一共调查的户数是:1+1+3+6+4+2+2+1=20(户);
    (2)、在这组数据中,4出现了6次,出现的次数最多,∴这组数据的众数是4吨;
    ∵将这组数据按从小到大的顺序排列,其中出于中间的两个数都是6,有=6,
    ∴这组数据的中位数是6吨; 这组数据的平均数是:=4.5(吨);
    (3)据题意得:800×4.5=3600(吨),
    答:估计这个小区3月份的总用水量是3600吨.
    点睛:本题主要考查的是众数、平均数、中位数的计算以及利用样本推算总量,属于基础题型.理解计算法则是解题的关键.
    25、(1)y=200x+74000(10≤x≤30)
    (2)有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【解析】
    (1)根据题意和表格中的数据可以得到y关于x的函数关系式;
    (2)根据题意可以得到相应的不等式,从而可以解答本题;
    (3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
    ∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
    (2)由题意可得,
    200x+74000≥79600,得x≥28,
    ∴28≤x≤30,x为整数,
    ∴x=28、29、30,
    ∴有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
    理由:∵y=200x+74000中y随x的增大而增大,
    ∴当x=30时,y取得最大值,此时y=80000,
    ∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
    26、.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    【详解】
    (1﹣)÷

    =,
    当x=+1时,原式=.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    题号





    总分
    得分
    批阅人
    每台甲型收割机的租金
    每台乙型收割机的租金
    A地区
    1800
    1600
    B地区
    1600
    1200
    1
    2
    1
    4
    1
    0
    1
    2
    1
    2
    0
    1
    2
    1
    0
    1

    相关试卷

    江苏省无锡新区2024年数学九年级第一学期开学综合测试试题【含答案】:

    这是一份江苏省无锡新区2024年数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省滨海县2025届数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份江苏省滨海县2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省镇江市镇江中学数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份2025届江苏省镇江市镇江中学数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map