|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年江苏省镇江市润州区数学九年级第一学期开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省镇江市润州区数学九年级第一学期开学调研模拟试题【含答案】01
    2024-2025学年江苏省镇江市润州区数学九年级第一学期开学调研模拟试题【含答案】02
    2024-2025学年江苏省镇江市润州区数学九年级第一学期开学调研模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省镇江市润州区数学九年级第一学期开学调研模拟试题【含答案】

    展开
    这是一份2024-2025学年江苏省镇江市润州区数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正方形、、…按如图所示的方式放置.点、、…和点、、…别在直线和轴上,则点的坐标是( )
    A.B.C.D.
    2、(4分)下列各方程中,是一元二次方程的是()
    A.B.C.D.
    3、(4分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有( )
    A.1个B.2个C.3个D.4个
    4、(4分)若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是( )
    A.30°B.45°C.60°D.75°
    5、(4分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为( )
    A.40°B.80°C.70°D.50°
    6、(4分)用配方法解方程时,原方程应变形为( )
    A.B.C.D.
    7、(4分)如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是( )
    A.①②③B.①②C.①③D.②③
    8、(4分)如图,在▱ABCD中,下列结论不一定正确的是( )
    A.∠1=∠2B.∠1=∠3C.AB=CDD.∠BAD=∠BCD
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
    10、(4分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= _____.
    11、(4分)已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.
    12、(4分)若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.
    13、(4分)关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某公司10名销售员,去年完成的销售额情况如表:
    (1)求销售额的平均数、众数、中位数;
    (2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
    15、(8分)解方程(本题满分8分)
    (1)(x-5)2 =2(5-x)
    (2)2x2-4x-6=0(用配方法);
    16、(8分)如图,函数的图象与函数的图象交于点,.
    (1)求函数的表达式;
    (2)观察图象,直接写出不等式的解集;
    (3)若点是轴上的动点,当周长最小时,求点的坐标.
    17、(10分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中表示时间,表示张强离家的距离.
    根据图象解答下列问题:
    (1)体育场离张强家多远?张强从家到体育场用了多少时间?
    (2)体育场离文具店多远?
    (3)张强在文具店停留了多少时间?
    (4)求张强从文具店回家过程中与的函数解析式.
    18、(10分)如图,在矩形中,点为上一点,连接、,.
    (1)如图1,若,,求的长.
    (2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若不等式组的解集是,那么m的取值范围是______.
    20、(4分)要使分式有意义,则应满足的条件是
    21、(4分)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.
    22、(4分)一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .
    23、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在△ABC中,AB=AC=4cm,将△ABC沿CA方向平移4cm得到△EFA,连接BE,BF;BE与AF交于点G
    (1)判断BE与AF的位置关系,并说明理由;
    (2)若∠BEC=15°,求四边形BCEF的面积.
    25、(10分)某旅游风景区,门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人部分打b折.设团体游客人,门票费用为y元,y与x之间的函数关系如图所示.
    (1)填空:a=_______;b=_________.
    (2)请求出:当x>10时,与之间的函数关系式;
    (3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A旅游团有多少人?
    26、(12分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
    (1)在图①中,画出以点A为顶点的非特殊的平行四边形.
    (2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用一次函数图象上点的坐标特征及正方形的性质可得出点的坐标,根据点的坐标的变化可找出变化规律“点的坐标为(n为正整数)”,再代入n=2019即可得出的坐标,然后再将其横坐标减去纵坐标得到的横坐标,和的纵坐标相同.
    【详解】
    解:当时,,
    ∴点A1的坐标为(0,1).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1),点C1的坐标为(1,0).
    当时,,
    ∴点A2的坐标为(1,2).
    ∵A2B2C2C1为正方形,
    ∴点B2的坐标为(3,2),点C2的坐标为(3,0).
    同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,
    ∴点的坐标为(n为正整数),
    ∴点的坐标为 ,
    ∴点的坐标为,即为 .
    故选:B.
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.
    2、A
    【解析】
    本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
    【详解】
    A. 方程x2−1=0符合一元二次方程的一般形式,正确;
    B. 方程x3+2x+1=0的最高次数是3,故错误;
    C. 方程3x+2=3化简为3x−1=0,该方程为一元一次方程,故错误;
    D. 方程x2+2y=0含有两个未知数,为二元二次方程,故错误;
    故选A.
    此题考查一元二次方程的定义,解题关键在于掌握其定义.
    3、C
    【解析】
    连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;
    【详解】
    连接EC,作CH⊥EF于H.
    ∵△ABC,△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴BD=EC=1,∠ACE=∠ABD=60°,
    ∵EF∥BC,
    ∴∠EFC=∠ACB=60°,
    ∴△EFC是等边三角形,CH=,
    ∴EF=EC=BD,∵EF∥BD,
    ∴四边形BDEF是平行四边形,故②正确,
    ∵BD=CF=1,BA=BC,∠ABD=∠BCF,
    ∴△ABD≌△BCF,故①正确,
    ∵S平行四边形BDEF=BD•CH=,
    故③正确,
    ∵△ABC是边长为3的等边三角形,S△ABC=
    ∴S△ABD
    ∴S△AEF= S△AEC=•S△ABD=
    故④错误,
    故选C.
    本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.
    4、B
    【解析】
    根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.
    【详解】
    设较小的角为x,较大的是3x,x+3x=180,x=45°.
    故选B.
    本题考查平行四边形的性质,比较简单.
    5、C
    【解析】
    先根据圆周角定理的推论得出∠ACB=90°,然后根据圆周角定理得到∠D=∠B,最后利用∠CAB=90°-∠B即可求解.
    【详解】
    ∵AB是直径,
    ∴∠ACB=90°,
    ∵∠D=∠B=20°,
    ∴∠CAB=90°-∠B =90°﹣20°=70°.
    故选:C.
    本题主要考查圆周角定理及其推论,直角三角形两锐角互余,掌握圆周角定理及其推论是解题的关键.
    6、A
    【解析】
    先将常数项移到右侧,然后在方程两边同时加上一次项一半的平方,左侧配方即可.
    【详解】

    x2-4x=9,
    x2-4x+4=9+4,

    故选A.
    本题考查了配方法,正确掌握配方法的步骤以及注意事项是解题的关键.
    7、A
    【解析】
    由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
    由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;
    由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.
    【详解】
    解:①∵四边形ADEF为正方形,
    ∴∠FAD=90°,AD=AF=EF,
    ∴∠CAD+∠FAG=90°,
    ∵FG⊥CA,
    ∴∠GAF+∠AFG=90°,
    ∴∠CAD=∠AFG,
    在△FGA和△ACD中,,
    ∴△FGA≌△ACD(AAS),
    ∴AC=FG.
    故正确;
    ②∵BC=AC,
    ∴FG=BC,
    ∵∠ACB=90°,FG⊥CA,
    ∴FG∥BC,
    ∴四边形CBFG是矩形.
    故正确;
    ③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
    ∴△ACD∽△FEQ.
    故正确.
    综上所述,正确的结论是①②③.
    故选A.
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
    8、B
    【解析】
    由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴AB=CD,AB∥CD,∠BAD=∠BCD
    ∴∠1=∠1
    故选B.
    本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(1-x)2
    【解析】
    根据题意即可列出代数式.
    【详解】
    ∵某种手机每部售价为元,如果每月售价的平均降低率为,
    则一个月后的售价为(1-x)
    故两个月后的售价为(1-x)2
    此题主要考查列代数式,解题的关键是根据题意找到数量关系.
    10、20°
    【解析】
    解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为20°.
    点睛:本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.
    11、-1
    【解析】
    设另一根为,则1·= -1 ,
    解得,=-1,
    故答案为-1.
    12、4
    【解析】
    因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.
    【详解】
    解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4
    解答本题的关键是确定x的值,即灵活应用中位数概念.
    13、m<
    【解析】
    根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.
    【详解】
    解:∵一元二次方程有两个不相等的实数根,
    ∴△=(-3)2−4m>0,
    ∴m<,
    故答案为:m<.
    本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.
    【解析】
    (1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
    (2)根据平均数,中位数,众数的意义回答.
    【详解】
    解:
    (1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);
    出现次数最多的是4万元,所以众数是4(万元);
    因为第五,第六个数均是5万元,所以中位数是5(万元).
    (2)今年每个销售人员统一的销售标准应是5万元.
    理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.
    本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.
    15、(1)x1=5,x2=3;(2)x1=3,x2=-1.
    【解析】
    试题分析:(1)先移项,再提取公因式(x-5),把原方程化为二个一元一次方程求解即可.
    (2)方程两边同除以2,再把常数项-3移到方程右边,方程两边同时加上一次项系数一半的平方,进行配方,方程两边直接开平方求出方程的解即可.
    试题解析:(1)移项得:(x-5)2+2(x-5)=0
    ∴(x-5)(x-3)=0
    即:x-5=0,x-3=0
    解得:x1=5,x2=3;
    (2)方程变形为:x2-2x-3=0
    移项得:x2-2x=3
    配方得:x2-2x+1=3+1
    (x-1)2=4
    x-1=±2
    解得:x1=3,x2=-1.
    考点:1.解一元二次方程----因式分解法;2.解一元二次方程---配方法.
    16、 (1);(2)或;(3)点的坐标为.
    【解析】
    (1)先把A(1,a),B(b,2)分别代入y=-2x+8中求出a、b的值得到A(1,6),B(3,2),然后把A点坐标代入中得到k的值,从而得到反比例函数解析式;
    (2)写出一次函数图象在反比例函数图像上方所对应的自变量的范围即可;
    (3)作点A关于y轴的对称点A′,连接BA′交y轴于P,如图,则A′(-1,6),根据两点之间线段最短判断此时PA+PB的值最小,△ABP周长最小,然后利用待定系数法求出直线A′B的解析式,从而得到点P的坐标.
    【详解】
    解:(1)把,分别代入得,
    ,解得,
    ∴,;
    把代入得,
    ∴反比例函数解析式为;
    (2)不等式的解集为或;
    (3)作点关于轴的对称点,连接交轴于,如图,则,
    ∵,
    ∴此时的值最小,周长最小,
    设直线的解析式为,
    把,代入得,解得,
    ∴直线的解析式为,
    ∴点的坐标为.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    17、(1)体育场离张强家,张强从家到体育场用了;(2)体育场离文具店;(3)张强在文具店停留了;(4)()
    【解析】
    (1)根据y轴的分析可得体育场离张强家的距离,根据x轴可以分析出张强从家到体育场用了多少时间.
    (2)通过图象可得张强在45min的时候,到达了文具店,通过图象观察体育场离文具店的距离为2.5-1.5=1.
    (3)根据图象可得张强在45min到65min之间是运动的路程为0,因此可得在文具店停留的时间.
    (4)已知在65min是路程为1.5,100min是路程为0,采用待定系数法计算可得一次函数的解析式.
    【详解】
    解:
    (1)体育场离张强家,张强从家到体育场用了
    (2)体育场离文具店
    (3)张强在文具店停留了
    (4)设张强从文具店回家过程中与的函数解析式为,
    将点,代入得

    解得,
    ∴()
    本题主要考查图象的分析识别能力,这是考试的热点,应当熟练掌握,注意第四问要写出自变量的范围.
    18、(1);(2)见解析
    【解析】
    (1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;
    (2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.
    【详解】
    解:(1)∵矩形,∴
    又∵

    设,在中,

    解得:,(舍)

    ∵矩形∴,

    在中,,
    ∴;
    (2)如答图,延长交的延长线于
    ∵,∴
    又∵为的中点,∴
    在和中

    ∴,
    ∵,




    本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    求出不等式x+9<4x-3的解集,再与已知不等式组的解集相比较即可得出结论.
    【详解】
    :,
    解不等式得,,
    不等式组的解集为,

    故答案为:.
    本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    20、≠1
    【解析】
    根据题意得:-1≠0,即≠1.
    21、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.
    【详解】
    ∵△ABC的三条中位线组成△A1B1C1,
    ∴A1B1=AC,B1C1=AB,A1C1=BC,
    ∴△A1B1C1的周长=△ABC的周长=×3=,
    依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,
    则△A5B5C5的周长为=,
    故答案为.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.
    22、1.
    【解析】
    试题分析:由第一段函数得出进水速度是20÷4=5升/分,由第二段函数可算出出水速度是(8×5-10)÷(12-4)=20÷8=2.75升/分,利用两点坐标(4,20),(12,20)求出第二段函数解析式为y=x+1,则a点纵坐标是,由第三段图像即出水速度×出水时间=出水量,列方程得:=(24-a)×2.75,解得a=1.
    考点:一次函数的实际应用.
    23、
    【解析】
    根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
    【详解】
    ∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
    ∴BO=OD=3,AO=OC=4,
    ∴AB==5,
    故菱形的周长为1,
    故答案为:1.
    本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)BE⊥AF,理由详见解析;(2)1.
    【解析】
    (1)由△ABC沿CA方向平移4cm得到△EFA,即可得BF=CA=AE,AB=EF,又由AB=AC,证得AB=BF=EF=AE,根据有四条边都相等的四边形是菱形,即可证得四边形ABFE是菱形,再根据菱形的对角线互相垂直可得BE⊥AF;
    (2)首先作BM⊥AC于点M,由AB=AE,∠BEC=15°,求得∠BAC=30°,那么BM=AB=2cm,然后利用梯形的面积公式即可求得四边形BCEF的面积.
    【详解】
    解:(1)BE⊥AF.理由如下:
    ∵将△ABC沿CA方向平移4cm得到△EFA,
    ∴BF=CA=AE=4cm,AB=EF.
    ∵AB=AC,
    ∴AB=BF=EF=AE,
    ∴四边形ABFE是菱形,
    ∴BE⊥AF;
    (2)作BM⊥AC于点M.
    ∵AB=AE,∠BEC=15°,
    ∴∠ABE=∠AEB=15°,
    ∴∠BAC=30°.
    ∴BM=AB=2cm.
    ∵BF=CA=AE=4cm,
    ∴四边形BCEF的面积=(BF+CE)•BM
    =×1×2
    =1.
    此题考查了菱形的判定与性质,平移的性质,等腰三角形的性质,梯形面积的求法等知识.此题难度不大,掌握平移的性质是解题的关键.
    25、 (1)80;8(2)y=64x+160;(3)40人
    【解析】
    分析:(1)根据函数图象可以求得a、b的值;
    (2)根据函数图象可以求得当x>10时,y与x之间的函数关系式;
    (3)根据(2)中的解析式可以求得A旅游团的人数.
    详解:(1)由图象可知,
    a=800÷10=80,
    b=×10=8,
    故答案为:80,8;
    (2)当x>10时,设y与x之间的函数关系式是y=kx+m,
    则,
    解得,,
    即当x>10时,y与x之间的函数关系式是y=64x+160;
    (3)∵2720>800,
    ∴将y=2720代入y=64x+160,得
    2720=64x+160,
    解得,x=40,
    即A旅游团有40人.
    点睛:本题考查一次函数的应用,揭帖关键是明确题意,找出所求问题需要的条件.
    26、(1)见解析;(2)见解析.
    【解析】
    (1)画出底为3,高为2的平行四边形ABCD即可.
    (2)利用数形结合的思想解决问题即可.
    【详解】
    解:(1)如图,平行四边形ABCD即为所求.
    (2)如图,平行四边形EFGH即为所求.
    图① 图②
    本题考查作图-应用与设计,平行四边形的判定和性质等知识,解题的关键是学会题数形结合的思想思考问题.
    题号





    总分
    得分
    销售额(单位:万元)
    3
    4
    5
    6
    7
    8
    10
    销售员人数(单位:人)
    1
    3
    2
    1
    1
    1
    1
    相关试卷

    2024-2025学年江苏省镇江市外国语数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省镇江市外国语数学九年级第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省镇江市江南学校数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省镇江市江南学校数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map