终身会员
搜索
    上传资料 赚现金

    江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】

    立即下载
    加入资料篮
    江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】第1页
    江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】第2页
    江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】

    展开

    这是一份江苏省无锡市锡山区2024-2025学年数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )
    A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
    2、(4分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    3、(4分)已知ABCD中,∠A+∠C=200°,则∠B的度数是( )
    A.100°B.160°C.80°D.60°
    4、(4分)如图,△ABC 称为第 1 个三角形,它的周长是 1,以它的三边中点为顶点组成第 2 个三角形,再以第 2 个三角形的三边中点为顶点组成第 3 个三角形,以此类推,则第 2019 个三角形的周长为( )
    A.B.C.D.
    5、(4分)下列各组条件中,不能判定四边形是平行四边形的是( )
    A.,B.,
    C.,D.,
    6、(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是( )
    A.B.
    C.D.
    7、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
    A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC
    8、(4分)已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)用科学记数法表示:__________________.
    10、(4分)已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.
    11、(4分)将二次根式化为最简二次根式的结果是________________
    12、(4分)直线与轴、轴的交点分别为、则这条直线的解析式为__________.
    13、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.
    15、(8分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于点.
    (1)求该抛物线的解析式;
    (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标;
    (3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.
    16、(8分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.
    (1)请将条形统计图补充完整;
    (2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是 ;
    (3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
    17、(10分)仔细阅读下面例题,解答问题:
    例题:已知二次三项式有一个因式是,求另一个因式以及m的值.
    解:设另一个因式为,得


    解得:,
    另一个因式为,m的值为
    问题:仿照以上方法解答下面问题:
    已知二次三项式有一个因式是,求另一个因式以及k的值.
    18、(10分)列方程解应用题:从甲地到乙地有两条公路,一辆私家车在高速公路上的平均速度比在普通公路上的平均速度高,行驶千米的高速公路比行驶同等长度的普通公路节约分钟,求该汽车在高速公路上的平均速度.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.
    20、(4分)将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.
    21、(4分)一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).
    22、(4分)将一张长与宽之比为的矩形纸片ABCD进行如下操作:对折并沿折痕剪开,发现每一次所得到的两个矩形纸片长与宽之比都是(每一次的折痕如下图中的虚线所示).已知AB=1,则第3次操作后所得到的其中一个矩形纸片的周长是 ;第2016次操作后所得到的其中一个矩形纸片的周长是 .
    23、(4分)如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值为____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
    (1)试判断四边形AEDF的形状,并证明;
    (2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.
    25、(10分)小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.
    26、(12分)如图,在△ABC中,AB=AC,AD⊥BC于D,点E,F分别是AB,AC的中点.求证:四边形AEDF是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.
    【详解】
    如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是直角三角形,且∠ACB=90°,
    故选B.
    本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    2、D
    【解析】
    ∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,
    ∴S2甲>S2乙>S2丙>S2丁,
    ∴射箭成绩最稳定的是丁;
    故选D.
    3、C
    【解析】
    试题分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC.
    ∵∠A+∠C=200°,∴∠A=100°.
    ∴∠B=180°﹣∠A=80°.故选C.
    4、B
    【解析】
    根据三角形的中位线等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半,然后根据指数的变化规律求解即可.
    【详解】
    解:根据三角形中位线定理可得第 2 个三角形的各边长都等于第 1 个三角形各边的一半,
    ∵第 1 个三角形的周长是 1,
    ∴第 2 个三角形的周长=第 1 个三角形的周长 1×= ,
    第 3 个三角形的周长为=第 2 个三角形的周长×=( )²,
    第 4 个三角形的周长为=第 3 个三角形的周长()²×=( )³,

    ∴第 2019 个三角形的周长═()2018= .
    故选B.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出后一个三角形的周长等于上一个三角形的周长的一半是解题的关键.
    5、B
    【解析】
    根据平行四边形的判定:A、C、D可判定为平行四边形,而B不具备平行四边形的条件,即可得出答案。
    【详解】
    A、 两组对边分别平行的四边形是平行四边形,故A正确;
    B、一组对边平行,另一组对边相等的四边形是等腰梯形不一定是平行四边形,故B不正确;
    C、一组对边平行且相等的四边形是平行四边形, 故C正确;
    D、两组对边分别相等的四边形是平行四边形,故D正确只.
    本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法并能进行推理论证是解决问题的关键。
    6、B
    【解析】
    试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.
    解:∵点(k,b)为第四象限内的点,
    ∴k>0,b<0,
    ∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.
    故选B.
    考点:一次函数的图象.
    7、C
    【解析】
    矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.
    所以选项A,B,D正确,C错误.
    故选C.
    8、D
    【解析】
    根据正比例函数的图象经过第一,三象限可得:, 因此在一次函数中,,根据直线倾斜方向向右上方,直线与y轴的交点在y轴负半轴,画出图象即可求解.
    【详解】
    根据正比例函数的图象经过第一,三象限可得:
    所以,
    所以一次函数中,,
    所以一次函数图象经过一,三,四象限,
    故选D.
    本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    故答案为.
    此题考查科学记数法,解题关键在于掌握一般形式.
    10、S△ABC=6cm2,CD=cm.
    【解析】
    利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.
    【详解】
    ∵∠ACB=90°,AB=5cm,AC=4cm,
    ∴BC==3cm,
    则S△ABC=×AC×BC=×4×3=6(cm2).
    根据三角形的面积公式得:AB•CD=6,
    即×5×CD=6,
    ∴CD=cm.
    本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.
    11、4
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】

    故答案为:4
    此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
    12、y=1x+1.
    【解析】
    把(-1,0)、(0,1)代入y=kx+b得到 ,然后解方程组可.
    【详解】
    解:根据题意得

    解得,
    所以直线的解析式为y=1x+1.
    故答案为y=1x+1.
    本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.
    13、 (-,0)
    【解析】
    根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
    【详解】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
    令y=x+4中x=0,则y=4,
    ∴点B的坐标为(0,4);
    令y=x+4中y=0,则x+4=0,解得:x=-6,
    ∴点A的坐标为(-6,0).
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(-3,1),点D(0,1).
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,-1).
    设直线CD′的解析式为y=kx+b,
    ∵直线CD′过点C(-3,1),D′(0,-1),
    ∴有,解得:,
    ∴直线CD′的解析式为y=-x-1.
    令y=-x-1中y=0,则0=-x-1,解得:x=-,
    ∴点P的坐标为(-,0).
    故答案为:(-,0).
    本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    【分析】由正方形性质和垂直定义,根据AAS证明△ABF≌△DAE,得BF=AE.DE=AF,
    可得结论.
    【详解】解:∵ABCD是正方形,∴AD=AB,∠BAD=90°,
    ∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°
    又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=BAF.
    ∵BF∥DE,∴∠AFB=∠DEG=∠AED.
    在△ABF与△DAE中,
    AD=AB,
    ∴△ABF≌△DAE(AAS).
    ∴BF=AE.DE=AF,
    ∵AF=AE+EF,
    ∴DE=BF+EF.
    【点睛】本题考核知识点:正方形性质.解题关键点:证三角形全等得对应线段相等.
    15、(1)y=x2-2x-2;(2)P点的坐标为( 0,)或( 0,);(2)点Q(, - ).
    【解析】
    (1)把A(﹣1,0),B(2,0)两点代入y=-x2+bx+c即可求出抛物线的解析式;
    (2)由A(﹣1,0),B(2,0)可得AB=1,由△PAB是以AB为腰的等腰三角形,可分两种情况PA=AB=1时,PB=AB=1时,根据勾股定理分别求出OP的长即可求解;
    (2)由抛物线得C(0,-2),求出直线BC的解析式,过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2),根据三角形QBC面积S=QM∙OB得出二次函数解析式,根据二次函数的性质即可求出Q点坐标及△QBC面积的最大值
    【详解】
    解:(1)因为抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,
    所以可得解得.
    所以该抛物线的解析式为:y=x2-2x-2;
    (2)由A(﹣1,0),B(2,0)可得AB=1.
    因为P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,可得PA=1或PB=1.
    当PA=1时,因为A(﹣1,0),所以OP==,所以P( 0,);
    当PB=1时,因为B(2,0),所以OP==,所以P( 0,);
    所以P点的坐标为( 0,)或( 0,);
    (2)对于y=x2-2x-2,当x=0时,y= -2,所以点C(0,-2)
    设直线BC的解析式为:y=kx+b(k≠0),B(2,0),C(0,-2)
    可得解得所以直线BC的解析式为:y=x-2.
    过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2).
    所以三角形QBC的面积为S=QM∙OB=[( x-2)-(x2-2x-2)]×2
    = -x2+x.
    因为a=-0),
    设E点坐标为(x,2b),D点坐标为(2a,y),
    则2bx=k, 2ay=k,
    ∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,
    即4k- (k+k)=9,
    解得k=3,
    ∵2bx×2ay=4abxy=k2=9,
    ∴4abxy=9,
    解得:xy=,
    则S△BED=BE×BD=
    ,
    ∴ S△ODE = S四边形ODBE -S△BED=9-
    本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.
    20、y=2x
    【解析】
    根据上加下减,左加右减的法则可得出答案
    【详解】
    一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:
    y=2x﹣3+3=2x
    此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
    21、(30﹣10)
    【解析】
    AB的黄金分割点有两个,一种情况是ACBC ,当AC

    相关试卷

    2025届江苏省无锡市锡山区九上数学开学学业质量监测试题【含答案】:

    这是一份2025届江苏省无锡市锡山区九上数学开学学业质量监测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市塔影中学九上数学开学调研试题【含答案】:

    这是一份2024年江苏省无锡市塔影中学九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市(锡山区锡东片)数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2024年江苏省无锡市(锡山区锡东片)数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map