江苏省无锡市凤翔中学2025届九上数学开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列说法错误的是( )
A.体育场离张强家2.5千米
B.体育场离文具店1千米
C.张强在文具店逗留了15分钟
D.张强从文具店回家的平均速度是千米/分
2、(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为
A.B.C.D.
3、(4分)要使式子有意义,则实数的取值范围是( )
A.B.C.D.
4、(4分)在二次根式中,a能取到的最小值为( )
A.0B.1C.2D.2.5
5、(4分)用配方法解下列方程,其中应在方程左右两边同时加上4的是( )
A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5
6、(4分)在Rt△中,,,则( )
A.9B.18C.20D.24
7、(4分)下面哪个点在函数y=2x+4的图象上( )
A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)
8、(4分)下列一次函数中,y随x增大而减小的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.
10、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.
11、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
12、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.
13、(4分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校计划成立下列学生社团: A.合唱团: B.英语俱乐部: C.动漫创作社; D.文学社:E.航模工作室为了解同学们对上述学生社团的喜爱情况某课题小组在全校学生中随机抽取了部分同学,进行“你最喜爱的一个学生社团”的调查,根据调查结果绘制了如下尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次接受调查的学生共有多少人;
(2)补全条形统计图,扇形统计图中D选项所对应扇形的圆心角为多少;
(3)若该学校共有学生3000人,估计该学校学生中喜爱合唱团和动漫创作社的总人数.
15、(8分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF,DC.求证:四边形ADCF是菱形.
16、(8分)如图,在△ABC中,AB=AC,AD⊥BC于D,点E,F分别是AB,AC的中点.求证:四边形AEDF是菱形.
17、(10分)某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:
(1)将条形统计图补充完整;
(2)抽查的学生劳动时间的众数为______,中位数为_______;
(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?
18、(10分)如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.
(1)求证:HC=HF.
(2)求HE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当x=______时,分式的值是1.
20、(4分)若,时,则的值是__________.
21、(4分)当时,二次根式的值是______.
22、(4分)如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
23、(4分)计算:_______,化简__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:
(1)该地出租车起步价是_____元;
(2)当x>2时,求y与x之间的关系式;
(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
25、(10分)如图1,已知AB⊥CD,C是AB上一动点,AB=CD
(1)在图1中,将BD绕点B逆时针方向旋转90°到BE,若连接DE,则△DBE为等腰直角三角形;若连接AE,试判断AE与BC的数量和位置关系并证明;
(2)如图2,F是CD延长线上一点,且DF=BC,直线AF,BD相交于点G,∠AGB的度数是一个固定值吗?若是,请求出它的度数;若不是,请说明理由.
26、(12分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:
(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);
(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
(1)因为张强从就家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;
(2)张强从体育场到文具店的递减函数,此段函数图象的最高点与最低点纵坐标的差为张强家到文具店的距离;
(3)中间一段与x轴平行的线段是张强在图书馆停留的时间;
(4)先求出张强家离文具店的距离,再求出从文具店到家的时间,最后求出二者的比值即可.
【详解】
解:(1)由函数图象可知,体育场离张强家2.5千米,从家到体育场用了15分;
(2)由函数图象可知,张强家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米;
(3)张强在文具店停留了分;
(4)从图象可知:文具店离张强家1.5千米,张强从文具店散步走回家花了分,
∴张强从文具店回家的平均速度是千米/分.
本题考查的是函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键.
2、B
【解析】
【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】,,
,
▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,
是的中位线,
,
,
故选B.
【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.
3、C
【解析】
根据二次根式的性质,被开方数大于等于0,就可以求解.
【详解】
根据题意得:x−2⩾0,
解得x⩾2.
故选:C
此题考查二次根式有意义的条件,解题关键在于掌握其性质
4、C
【解析】
根据二次根式的定义求出a的范围,再得出答案即可.
【详解】
要使有意义,必须a-2≥0,
即a≥2,
所以a能取到的最小值是2,
故选C.
本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.
5、B
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;
B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;
C、将该方程的二次项系数化为x 2 -2x= ,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;
D、将该方程的二次项系数化为x 2 +x= ,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方;故本选项错误;
故选B.
本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
6、B
【解析】
根据勾股定理即可得到结论.
【详解】
∵Rt△中,,,
∴2=18
故选B.
此题主要考查勾股定理,解题的关键是熟知勾股定理的内容.
7、D
【解析】
将四个选项中的点分别代入解析式,成立者即为函数图象上的点.
【详解】
A、将(2,1)代入解析式y=2x+4得,2×2+4=8≠1,故本选项错误;
B、将(-2,1)代入解析式y=2x+4得,2×(-2)+4=0≠1,故本选项错误;
C、将(2,0)代入解析式y=2x+1得,2×2+4=8≠0,故本选项错误;
D、将(-2,0)代入解析式y=2x+1得,2×(-2)+4=0,故本选项正确;
故选D.
本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.
8、D
【解析】
∵A,B,C中,自变量的系数大于0,∴y随x增大而增大;
∵D中,自变量的系数小于0,∴y随x增大而减小;
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
通过矩形的性质可得,再根据∠AOB=11°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
【详解】
∵四边形ABCD是矩形
∴
∵∠AOB=11°
∴
∴△AOD是等边三角形
∵
∴
∴
∵CE//BD,DE//AC
∴四边形CODE是平行四边形
∵
∴四边形CODE是菱形
∴
∴四边形CODE的周长
故答案为:1.
本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
10、
【解析】
四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.
【详解】
依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、
(2,3)、(2,-4)、(3,-4),
要使反比例函数y=kx的图象在第二、四象限,则k<0,
这样的情况有3种即(1,-4)、(2,-4)、(3,-4),
故概率为:=.
本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.
11、π+2
【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.
【详解】
原式=.
故答案为:.
本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
12、1
【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.
【详解】
连接PO,∵点P的坐标是(),
∴点P到原点的距离=
=1.
故答案为:1
此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.
13、2
【解析】
先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.
【详解】
因为,△ABC中,∠C=90°,∠A=30°,
所以, ,
因为,DE是中位线,
所以,.
故答案为2
本题考核知识点:直角三角形,三角形中位线. 解题关键点:熟记直角三角形性质,三角形中位线性质.
三、解答题(本大题共5个小题,共48分)
14、(1)200;(2)补全条形统计图见解析;D选项所对应扇形的圆心角度数=72°;(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
【解析】
(1)由社团人数及其所占百分比可得总人数;
(2)总人数减去其它社团人数可求得的人数,再用乘以社团人数所占比例即可得;
(3)总人数乘以样本中、社团人数和占被调查人数的比例即可得.
【详解】
解:(1)本次接受调查的学生共有(人,
(2)社团人数为(人,
补全图形如下:
扇形统计图中选项所对应扇形的圆心角为,
(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为(人.
答:估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.
15、证明见解析.
【解析】
试题分析:先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE∥BC,证出AC⊥DF,即可得出结论.
试题解析:证明:∵E是AC的中点,∴AE=CE.
∵EF=DE,
∴四边形ADCF是平行四边形.
∵D、E分别是AB、AC的中点,
∴DE∥BC.
∴∠AED=∠ACB.
∵∠ACB=90°,
∴∠AED=90°,即AC⊥DF.
∴□ADCF是菱形.
16、证明见解析.
【解析】
先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形.
【详解】
解:∵AD⊥BC,点E、F分别是AB、AC的中点,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,点E、F分别是AB、AC的中点,
∴AE=AF,
∴AE=AF=DE=DF,
∴四边形AEDF是菱形.
本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形.
17、(1)见解析(2)1.5、1.5(3)216
【解析】
(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数;
(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;
(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.
【详解】
(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100−(12+30+18)=40(人),
补全统计图,如图所示:
(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,
故答案为:1.5、1.5;
(3)1200×18%=216,
答:估算该校学生参加义务劳动2小时的有216人
此题考查扇形统计图,条形统计图,中位数,众数,解题关键在于看懂图中数据
18、(1)见解析;(2)HE=.
【解析】
(1)利用直角三角形斜边上的中线等于斜边的一半求解即可;
(2)分别求得HO和OE的长后即可求得HE的长.
【详解】
(1)证明:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,
∴∠ACD=∠GCF=45°,
∴∠ACF=90°,
又∵H是AF的中点,
∴CH=HF;
(2)∵CH=HF,EC=EF,
∴点H和点E都在线段CF的中垂线上,
∴HE是CF的中垂线,
∴点H和点O是线段AF和CF的中点,
∴OH=AC,
在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,
∴AC=,
∴CF=3,
又OE是等腰直角△CEF斜边上的高,
∴OE=,
∴HE=HO+OE=2;
本题考查了正方形的性质,直角三角形斜边上的中线,三角形中位线,垂直平分线,勾股定理,解题的关键是根据题干与图形中角和边的关系,找到解决问题的条件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
20、1
【解析】
利用平方差公式求解即可求得答案.
【详解】
解:当,时,
.
故答案为:1.
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
21、
【解析】
把x=-2代入根式即可求解.
【详解】
把x=-2代入得
此题主要考查二次根式,解题的关键是熟知二次根式的性质.
22、8
【解析】
【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
【详解】∵四边形ACDF是正方形,
∴AC=FA,∠CAF=90°,
∴∠CAE+∠FAB=90°,
∵∠CEA=90°,∴∠CAE+∠ACE=90°,
∴∠ACE=∠FAB,
又∵∠AEC=∠FBA=90°,
∴△AEC≌△FBA,
∴CE=AB=4,
∴S阴影==8,
故答案为8.
【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
23、
【解析】
先对通分,再化简计算得到答案;根据二次根式对进行化简,再去括号计算,即可得到答案.
【详解】
=
=
=
=
=
=
=
=
本题考查分式的减法计算、二次根式的加减混合运算,解题的关键是掌握分式的减法计算、二次根式的加减混合运算.
二、解答题(本大题共3个小题,共30分)
24、 (1)10;(2)y=2x+6;(3)这位乘客需付出租车车费42元.
【解析】
(1)由图象知x=0时,y=10可得答案;
(2)先求得出租车每公里的单价,根据车费=起步价+超出部分费用可得函数解析式;
(3)将x=18代入(2)中所求函数解析式.
【详解】
解:(1)由函数图象知,出租车的起步价为10元,
故答案为10;
(2)当x>2时,每公里的单价为(14﹣10)÷(4﹣2)=2,
∴当x>2时,y=10+2(x﹣2)=2x+6;
(3)当x=18时,y=2×18+6=42元,
答:这位乘客需付出租车车费42元.
此题考查了函数图象,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
25、(1)AE=BC,AE⊥BC,证明见解析;(2)∠AGB的度数是固定值,度数为45°.
【解析】
(1)结论:AE=BC,AE⊥BC.根据角的和差关系可得∠ABE=∠BDC,利用SAS证明△ABE≌△BDC,再利用全等三角形的性质得出AE=BC,∠BAE=∠BCD=90°,即可解决问题;
(2)如图,作AE⊥AB于A,使AE=BC,连结DE,BE.利用SAS可证明△ABE≌△BDC,再利用全等三角形的性质得出BE=BD,∠EBD=90°,可得出∠EDB=∠AGB=45°.即可得答案.
【详解】
(1)结论:AE=BC,AE⊥BC.理由如下:
∵AB⊥CD,将BD绕点B逆时针方向旋转90°到BE,
∴∠BCD=∠EBD=90°,
∴∠ABE+∠DBC=90°,∠DBC+∠BDC=90°,
∴∠ABE=∠BDC,
在△ABE和△CDB中,,
∴△ABE≌△CDB(SAS),
∴AE=BC,∠BAE=∠BCD=90°,
∴AE⊥BC,
∴AE与BC的数量和位置关系是AE=BC,AE⊥BC.
(2)∠AGB的度数是固定值,∠AGB=45°.理由如下:
如图,作AE⊥AB于A,使AE=BC,连结DE,BE.
∵AE⊥AB,∠BCD=90°,
∴∠BAE=∠BCD=90°,
在Rt△BAE和Rt△DCB中,,
∴△BAE≌△DCB(SAS),
∴BE=BD,∠ABE=∠BDC,
∵∠BDC+∠DBC=90°,
∴∠ABE+∠DBC=90°,
∴∠EBD=90°,
∴△BED是等腰直角三角形,
∴∠EDB=45°
∵∠BAE=∠ACD=90°,
∴AE∥DF,
∵AE=BC,BC=DF,
∴AE=DF,
∴四边形AFDE是平行四边形,
∴AF∥DE
∴∠AGB=∠EDB=45°.
∴∠AGB的度数是固定值,∠AGB=45°.
本题考查全等三角形的判定与性质、平行四边形的判定与性质及等腰三角形的性质,正确作出辅助线并熟练掌握全等三角形及平行四边形的判定定理是解题关键.
26、(1); (2)22.1
【解析】
(1)使用待定系数法列出方程组求解即可.
(2)把x=12代入(1)中的函数关系式,就可求解.
【详解】
(1)设函数关系式为y=kx+b,根据题意得
解得
∴y与x之间的函数关系式为y=1.1x+4.1.
(2)当x=12时,y=1.1×12+4.1=22.1.
∴桌面上12个整齐叠放的饭碗的高度是22.1cm.
本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.
题号
一
二
三
四
五
总分
得分
江苏省无锡市祝塘中学2025届九上数学开学考试试题【含答案】: 这是一份江苏省无锡市祝塘中学2025届九上数学开学考试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市江阴市长泾片2025届九上数学开学监测模拟试题【含答案】: 这是一份江苏省无锡市江阴市长泾片2025届九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市惠山区七校2024年数学九上开学学业质量监测模拟试题【含答案】: 这是一份江苏省无锡市惠山区七校2024年数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。