江苏省南京栖霞区2024年九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份江苏省南京栖霞区2024年九年级数学第一学期开学考试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法错误的是
A.必然事件发生的概率为B.不可能事件发生的概率为
C.有机事件发生的概率大于等于、小于等于D.概率很小的事件不可能发生
2、(4分)如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( )
A.2B.3C.4D.6
3、(4分)如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
A.△CDF≌△EBC
B.∠CDF=∠EAF
C.CG⊥AE
D.△ECF是等边三角形
4、(4分)(1)中共有1个小正方体,其中一个看的见,0个看不见;(2)中共有8个小正方体,其中7个看得见,一个看不见;(3)中共有27个小正方体,其中19个看得见,8个看不见;…,则第(5)个图中,看得见的小正方体有( )个.
A.100B.84C.64D.61
5、(4分)如图,在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②EB⊥ED;③PD=,其中正确结论的序号是( )
A.①②B.①③C.②③D.①②③
6、(4分)在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A.B.C.D.
8、(4分)如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点,对于四边形MNPQ的形状,以下结论中,错误的是
A.当M,N,P,Q是各边中点,四边MNPQ一定为平行四边形
B.当M,N,P,Q是各边中点,且时,四边形MNPQ为正方形
C.当M,N、P,Q是各边中点,且时,四边形MNPQ为菱形
D.当M,N、P、Q是各边中点,且时,四边形MNPQ为矩形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知Rt△ABC中,AB=3,AC=4,则BC的长为__________.
10、(4分)在计算器上按照下面的程序进行操作:
下表中的x与y分别是输入的6个数及相应的计算结果:
上面操作程序中所按的第三个键和第四个键应是
11、(4分)如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.
(1)如图1,当点恰好落在边上时,______;
(2)如图2,若点落在内(包括边界),则的取值范围是______.
12、(4分)对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为 .
13、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)有下列命题
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
(1)上述四个命题中,是真命题的是 (填写序号);
(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知: .
求证: .
证明:
15、(8分)先化简,再求值,其中a=-2
16、(8分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.
(1)判断△AEF的形状,并说明理由;
(2)求折痕EF的长度;
(3)如图2,展开纸片,连接CF,则点E到CF的距离是 .
17、(10分)解不等式组,并在数轴上把解集表示出来.
18、(10分)如图,在矩形 ABCD中, AB16 , BC18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.
(I)若 AE0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;
(II)若 AE3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;
(III)若AE8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= .
20、(4分)写出一个轴对称图形但不是中心对称图形的四边形:__________________
21、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.
22、(4分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=,那么6※3=_____.
23、(4分)如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.
(1)求点A,B,C的坐标;
(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;
(3)当△CBD为等腰三角形时直接写出D坐标.
25、(10分)如图,已知互余,∠2与∠3互补,.求的度数.
26、(12分) “垃圾分一分,环境美十分”.甲、乙两城市产生的不可回收垃圾需运送到、两垃圾场进行处理,其中甲城市每天产生不可回收垃圾吨,乙城市每天产生不可回收垃圾吨。、两垃圾场每天各能处理吨不可回收垃圾。从垃圾处理场到甲城市千米,到乙城市千米;从垃圾处理场到甲城市千米,到乙城市千米。
(1)请设计一个运输方案使垃圾的运输量(吨.千米)尽可能小;
(2)因部分道路维修,造成运输量不低于吨,请求出此时最合理的运输方案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
利用概率的意义分别回答即可得到答案.
概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.
【详解】
解:A、必然发生的事件发生的概率为1,正确;
B、不可能发生的事件发生的概率为0,正确;
C、随机事件发生的概率大于0且小于1,正确;
D、概率很小的事件也有可能发生,故错误,
故选D.
本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.
2、C
【解析】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=8,CD=AB=6,
∴∠F=∠DCF,
∵∠C平分线为CF,
∴∠FCB=∠DCF,
∴∠F=∠FCB,
∴BF=BC=8,
同理:DE=CD=6,
∴AF=BF−AB=2,AE=AD−DE=2
∴AE+AF=4
故选C
3、C
【解析】
A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
DF=BC,
∠CDF=∠EBC,
CD=EB,
∴△CDF≌△EBC(SAS),故A正确;
B.在平行四边形ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故B正确;
C. .当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故C错误;
D. 同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故D正确;
故选C.
点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.
4、D
【解析】
根据前3个能看到的小正方体的数量找到规律,利用规律即可解题.
【详解】
(1)中共有1个小正方体,其中一个看的见,0个看不见,即 ;
(2)中共有8个小正方体,其中7个看得见,一个看不见,即;
(3)中共有27个小正方体,其中19个看得见,8个看不见,即;
……
第(5)个图中,看得见的小正方体有即个;
故选:D.
本题主为图形规律类试题,找到规律是解题的关键.
5、A
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③在Rt△AEP中,利用勾股定理,可求得EP、BE的长,再依据△APD≌△AEB,即可得出PD=BE,据此即可判断.
【详解】
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB,故①正确;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED,故②正确;
③在Rt△AEP中,
∵AE=AP=1,
∴EP=,
又∵PB=,
∴BE=,
∵△APD≌△AEB,
∴PD=BE=,故③错误,
故选A.
本题考查了全等三角形的判定与性质、正方形的性质、三角形面积、勾股定理等,综合性质较强,有一定的难度,熟练掌握相关的性质与定理是解题的关键.
6、B
【解析】
∵-20,+10,
∴点P (-2,+1)在第二象限,
故选B.
7、C
【解析】
分析:根据第二象限内点的坐标特征,可得答案.
详解:由题意,得
x=-4,y=3,
即M点的坐标是(-4,3),
故选C.
点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.
8、B
【解析】
连接AC、BD,根据三角形中位线定理得到,,,,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
【详解】
解:连接AC、BD交于点O,
,N,P,Q是各边中点,
,,,,
,,
四边MNPQ一定为平行四边形,A说法正确,不符合题意;
时,四边形MNPQ不一定为正方形,B说法错误,符合题意;
时,,
四边形MNPQ为菱形,C说法正确,不符合题意;
时,,
四边形MNPQ为矩形,D说法正确,不符合题意.
故选B.
本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或1.
【解析】
根据勾股定理来进行解答即可,本题需要分两种情况进行计算,即BC为斜边和BC为直角边.
【详解】
根据勾股定理可得:AB=
或AB=,
故答案为1或.
本题主要考查的是利用勾股定理求边长的问题,属于基础问题.在利用勾股定理时一定要注意所求的边为直角边还是斜边.
10、+、1
【解析】
设y=kx+b,把x=-2,y=-5;x=0,y=1代入得:
解之得即y=3x+1.
所以第三个键和第四个键应是+、1.
11、2;
【解析】
(1)根据折叠的性质可得,由此即可解决问题;
(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;
【详解】
解:(1)∵折叠,
∴.
∵,
∴,
∴,
∴,
∴.
(2)当落在上时,过点作于点.
∵,,
∴,
∴.
在中,,
∴.
∵,
∴,
∴.
∴,
∴,
∴.
本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
12、.
【解析】
先根据规定运算把方程转化为一般形式,然后把分式方程转化为整式方程求解,再进行检验即可得解.
【详解】
解:2⊕(2x﹣1)=1可化为﹣=1,
方程两边都乘以2(2x﹣1)得,2﹣(2x﹣1)=2(2x﹣1),
解得x=,
检验:当x=时,2(2x﹣1)=2(2×﹣1)=≠0,
所以,x=是原分式方程的解,
即x的值为.
故答案为.
本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
13、2
【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
【详解】
∵2=1×2,∴F(2)=,故(1)是正确的;
∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
故答案为2.
本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
三、解答题(本大题共5个小题,共48分)
14、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
【解析】
(1)根据平行线的判定定理写出真命题;
(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
【详解】
(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
②两组对角分别相等的四边形是平行四边形.故正确;
③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
故答案是:①②④;
(2)以②为例:
已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
求证:四边形ABCD是平行四边形.
证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
∴∠1+∠2=∠2+∠1.①
∵∠ABC=∠ADC,
即∠1+∠2=∠2+∠1,②
由①②相加、相减得:∠1=∠1,∠2=∠2.
∴AB∥CD,AD∥BC.
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
15、,原式=-5;
【解析】
先把除法运算转化为乘法运算,再把分子分母运用完全平方公式和平方差公式因式分解,约去公因式,化成最简形式,再把的值代入求值.
【详解】
原式
,
当时,原式.
这道求代数式值的题目,不应考虑把的值直接代入,通常做法是先把代数式化简,把除法转换为乘法,约去分子分母中的公因式,然后再代入求值.
16、(1)△DEF是等腰三角形,理由见解析;(2);(3)1
【解析】
(1)根据折叠和平行的性质,可得∠AEF=∠AFE,即得出结论;
(2)过点E作EM⊥AD于点M,得出四边形ABEM是矩形,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,利用勾股定理求出x,在Rt△EMF中,用勾股定理即可求得;
(3)证明四边形AECF是菱形,设点E到CF的距离为h,通过面积相等,即可求得.
【详解】
(1)△AEF是等腰三角形.
理由如下:由折叠性质得∠AEF=∠FEC,
在矩形ABCD中,AD∥BC,∴∠AFE=∠FEC,
∴∠AEF=∠AFE, ∴AF=AE;
∴△AEF是等腰三角形;
故答案为:△AEF是等腰三角形.
(2)如图,过点E作EM⊥AD于点M,
则∠AME=90°,
又∵在矩形ABCD中,∠BAD=∠B=90°,
∴四边形ABEM是矩形,
∴AM=BE,ME=AB=1,
设EC=x,则AE=x,BE=16-x,
在Rt△ABE中,AE2=AB2+BE2,x2=12+(16-x)2,
解之得x=10,
∴EC=AE=10,BE=6,
∴AM=6,AF=AE=10,
∴MF=AF-AM=4,
在Rt△EMF中,;
故答案为:;
(3)由(1)知,AE=AF=EC,
∵AF∥EC,
∴四边形AECF是平行四边形,
∴四边形AECF是菱形,
设点E到CF的距离为h,
,
∴h=1.即E到CF的距离为1,
故答案为:1.
考查了折叠图形和平行线结合的性质,等腰三角形的判定和性质,勾股定理求角的应用,菱形的判定和性质,等面积法的应用,熟记和掌握几何图形的判定和性质内容是解题的关键.
17、x>1
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解:
解不等式①,得x>1,
解不等式②,得x≥-4,
把不等式①和②的解集在数轴上表示出来为:
∴原不等式组的解集为x>1,
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
18、 (I) ;(II) 16或10;(III) .
【解析】
(I)根据已知条件直接写出答案即可.
(II)分两种情况: 或讨论即可.
(III)根据已知条件直接写出答案即可.
【详解】
(I) ;
(II)∵四边形是矩形,∴,.
分两种情况讨论:
(i)如图1,
当时,即是以为腰的等腰三角形.
(ii)如图2,当时,过点作∥,分别交与于点、.
∵四边形是矩形,
∴∥,.
又∥,
∴四边形是平行四边形,又,
∴□是矩形,∴,,即,
又,
∴,,
∵,∴,
∴,
在中,由勾股定理得:,
∴,
在中,由勾股定理得:,
综上,的长为16或10.
(III) . (或).
本题主要考查了四边形的动点问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6.
【解析】
根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB即可.
【详解】
过点A作AC⊥OB于点C,
∵AO=AB,
∴CO=BC,
∵点A在其图象上,
∴AC×CO=3,
∴AC×BC=3,
∴S△AOB=6.
故答案为6.
20、等腰梯形(答案不唯一)
【解析】
根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.
【详解】
是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.
故答案为:等腰梯形(答案不唯一).
此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.
21、1
【解析】
由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.
【详解】
解:在矩形中,对角线,的交点为,
,,.
又∵点为边的中点,
,
,,
,
,
.
故答案为:1.
本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.
22、1.
【解析】
试题解析:6※3=.
考点:算术平方根.
23、1cm
【解析】
根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.
【详解】
解:∵E为△ABC中AB边的中点,
∴BE=EA.
∵EF∥BC,
∴=,
∴BF=FC,则EF为△ABC的中位线,
∴AC=2EF=1.
故答案为1.
本题考查的是三角形中位线定理的运用和平行线分线段成比例定理的运用,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)A(,),B(﹣1,0),C(4,0);(2)存在,=;(3)点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).
【解析】
(1)将y=x+1与y=﹣x+3联立求得方程组的解可得到点A的坐标,然后将y=0代入函数解析式求得对应的x的值可得到点B、C的横坐标;
(2)当OE∥AD时,存在四边形EODA为平行四边形,然后依据平行线分线段成比例定理可得到=;
(3)当DB=DC时,点D在BC的垂直平分线上可先求得点D的横坐标;即AC与y轴的交点为F,可求得CF=BC=F,当点D与点F重合或点D与点F关于点C对称时,三角形BCD为等腰三角形,当BD=BC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,从而可求得点D的横坐标.
【详解】
(1)将y=x+1与y=﹣x+3联立得:,
解得:x=,y=,
∴A(,).
把y=0代入y=x+1得:x+1=0,解得x=﹣1,
∴B(﹣1,0).
把y=0代入y=﹣x+3得:﹣ x+3=0,解得:x=4,
∴C(4,0).
(2)如图,存在点E使EODA为平行四边形.
∵EO∥AC,
∴==.
(3)当点BD=DC时,点D在BC的垂直平分线上,则点D的横坐标为,
将x=代入直线AC的解析式得:y=,
∴此时点D的坐标为(,).
如图所示:
FC==5,
∴BC=CF,
∴当点D与点F重合时,△BCD为等腰三角形,
∴此时点D的坐标为(0,3);
当点D与点F关于点C对称时,CD=CB,
∴此时点D的坐标为(8,﹣3),
当BD=DC时,设点D的坐标为(x,﹣x+3),
依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,
解得x=4(舍去)或x=﹣,
将x=﹣代入y=﹣x+3得y=,
∴此时点D的坐标为(﹣,).
综上所述点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).
本题主要考查的是一次函数的综合应用,利用平行线分线段成比例定理求解是解答问题(2)的关键;分类讨论是解答问题(3)的关键.
25、130°
【解析】
先根据∠2与∠3互补,∠3=140°,得出AB∥CD,∠2=40°,再根据∠1和∠2互余,得到∠1的度数,最后根据平行线的性质,即可得到∠4的度数.
【详解】
∵∠2与∠3互补,∠3=140°,
∴AB∥CD,∠2=180°-140°=40°,
又∵∠1和∠2互余,
∴∠1=90°-40°=50°,
∵AB∥CD,
∴∠4=180°-∠1=180°-50°=130°.
本题主要考查了平行线的性质与判定以及余角和补角计算的应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
26、(1)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨,乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;(2)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨.
【解析】
(1)设出甲城市运往垃圾场的垃圾为吨,从而表示出两个城市运往两个垃圾场的垃圾的吨数,再根据路程计算出总运输量,于是就得到一个总运输量与的函数关系式,根据函数的增减性和自变量的取值范围,确定何时总运输量最小,得出运输方案;
(2)利用运输量不低于2600吨,得出自变量的取值范围,再依据函数的增减性做出判断,制定方案.
【详解】
解:(1)甲城市运送不可回收垃圾到垃圾场吨,总运输量为吨.千米
,随增大而增大
当取最小,最小
由题意可知,解得:
当时,运输量最小;
甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;
乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨
(2)由①可知:,又,解得:
,
此时当时,运输量最小;运输方案最合理
甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;
乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨
本题考查一次函数的应用,一元一次不等式组应用等知识,准确的理解数据之间的关系,设合适的未知数,得到总运输量与自变量的函数关系式是解决问题的关键.
题号
一
二
三
四
五
总分
得分
x
-2
-1
0
1
2
3
y
-5
-2
1
4
7
10
相关试卷
这是一份2025届江苏省南京市栖霞区数学九年级第一学期开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南京市栖霞区、雨花区、江宁区数学九上开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省南京市栖霞区、雨花区、江宁区数学九年级第一学期开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。