终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省武汉黄陂区六校联考2024-2025学年九上数学开学学业水平测试试题【含答案】

    立即下载
    加入资料篮
    湖北省武汉黄陂区六校联考2024-2025学年九上数学开学学业水平测试试题【含答案】第1页
    湖北省武汉黄陂区六校联考2024-2025学年九上数学开学学业水平测试试题【含答案】第2页
    湖北省武汉黄陂区六校联考2024-2025学年九上数学开学学业水平测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉黄陂区六校联考2024-2025学年九上数学开学学业水平测试试题【含答案】

    展开

    这是一份湖北省武汉黄陂区六校联考2024-2025学年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)方程有( )
    A.两个不相等的实数根B.两个相等的实数根C.无实数根D.无法确定
    2、(4分)如图,从几何图形的角度看,下列这些图案既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    3、(4分)一次函数是(是常数,)的图像如图所示,则不等式的解集是( )
    A.B.C.D.
    4、(4分)下列各式中,不是最简二次根式的是( )
    A.B.C.D.
    5、(4分)下列二次根式中,不是最简二次根式的是( )
    A.B.C.D.
    6、(4分)某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是( )
    A.B.
    C.D.
    7、(4分)下列关于x的方程中,是分式方程的是( ).
    A.B.
    C.D.3x-2y=1
    8、(4分)菱形的两条对角线长为6 cm 和8 cm,那么这个菱形的周长为
    A.40 cmB.20 cmC.10 cmD.5 cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)点 C 是线段 AB 的黄金分割点(AC>BC),若 AC=2则 =______.
    10、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
    11、(4分)甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")
    12、(4分)如图,中,是延长线上一点,,连接交于点,若平分,,则________.
    13、(4分)已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)
    (1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;
    (2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;
    (3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.
    15、(8分)如图,将边长为 4 的正方形 ABCD 沿其对角线 AC 剪开,再把△ABC沿着 AD 方向平移,得到 △ABC .
    (1)当两个三角形重叠部分的面积为 3 时,求移动的距离 AA ;
    (2)当移动的距离 AA 是何值时,重叠部分是菱形.
    16、(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:
    (1)直接写出y甲,y乙关于x的函数关系式;
    (2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
    17、(10分)已知关于x的一元二次方程总有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若此方程的两根均为正整数,求正整数m的值.
    18、(10分)如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,csA=.
    (1)求线段CD的长;
    (2)求sin∠DBE的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若,则a2﹣6a﹣2的值为_____.
    20、(4分)两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。
    21、(4分)在方程组中,已知,,则a的取值范围是______.
    22、(4分)计算:(1)=______;(2)=______;(3) =______.
    23、(4分)如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?
    (1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.
    方法2:如图②,取四边形四边的中点,,,,连接,,,,
    (2)求证:四边形是平行四边形;
    (3)请直接写出S四边形ABCD与之间的关系:_____________.
    方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;
    (4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.
    (5)求证:四边形是平行四边形.
    (注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)
    (6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD= .
    (7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
    25、(10分)求不等式组的解集,并把解集在数轴上表示出来.
    26、(12分)小明星期天从家里出发骑车去舅舅家做客,当他骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是他本次去舅舅家所用的时间与路程的关系式示意图,根据图中提供的信息回答下列问题:
    (1)小明家到舅舅家的路程是______米,小明在商店停留了______分钟;
    (2)在整个去舅舅家的途中哪个时间段小明骑车速度最快,最快的速度是多少米/
    分?
    (3)本次去舅舅家的行程中,小明一共行驶了多少米?一共用了多少分钟?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据根的差别式进行判断即可.
    【详解】
    解:∵a=1,b=3,c=2,
    ∴∆=
    =1>0
    ∴ 这个方程有两个不相等的实数根.
    故选:A.
    本题考查了一元二次方程根的判别式,正确理解根的判别式是解题的关键.
    2、B
    【解析】
    根据轴对称图形和中心对称图形的定义对各个选项一一判断即可得出答案.
    【详解】
    A.是轴对称图形,不是中心对称图形;
    B.既是轴对称图形,又是中心对称图形;
    C.是轴对称图形,不是中心对称图形;
    D.是轴对称图形,不是中心对称图形.
    故选B.
    本题考查了中心对称图形和轴对称图形的识别.熟练应用中心对称图形和轴对称图形的概念进行判断是解题的关键.
    3、C
    【解析】
    根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),得到当x>2时,y

    相关试卷

    2024-2025学年湖北省宜昌伍家岗区四校联考九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年湖北省宜昌伍家岗区四校联考九上数学开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉市七一中学九上数学开学学业水平测试试题【含答案】:

    这是一份2024-2025学年湖北省武汉市七一中学九上数学开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】:

    这是一份2024-2025学年湖北省武汉硚口区六校联考数学九上开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map