黑龙江省东方红林业局中学2025届九上数学开学预测试题【含答案】
展开
这是一份黑龙江省东方红林业局中学2025届九上数学开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组条件中,不能判定四边形是平行四边形的是( )
A.,B.,
C.,D.,
2、(4分)如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为( )
A.B.C.D.
3、(4分)下列各组数中,不能构成直角三角形的是( )
A.B.C.D.
4、(4分)在,,,,,中分式的个数有( )
A.2个B.3个C.4个D.5个
5、(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么( )
A.正面朝上的频数是0.4
B.反面朝上的频数是6
C.正面朝上的频率是4
D.反面朝上的频率是6
6、(4分)一个三角形三边的比为1:2:,则这个三角形是( )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形
7、(4分)已知是完全平方式,则的值为( )
A.6B.C.12D.
8、(4分)一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( )
A.5B.6C.7D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为_____.
10、(4分)在一个不透明的盒子中装有2个白球和3个红球这些球除了颜色外无其他差别现从这个盒子中任意摸出1个球,那么摸到1个红球的概率是_________.
11、(4分)如图,函数和的图象交于点,根据图象可知,关于的不等式的解集为________.
12、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
13、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,是上一点,,过点作的垂线交于点.
求证:.
15、(8分)已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.
(1)求实 数k的取值范围;
(2)若(x1+1)(x2+1)=2,试求k的值.
16、(8分)如图,函数的图像与函数的图像交于两点,与轴交于点,已知点的坐标为点的坐标为.
(1)求函数的表达式和点的坐标;
(2)观察图像,当时,比较与的大小;
(3)连结,求的面积.
17、(10分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.
18、(10分)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P为和谐点。
(1)求函数的图像上和谐点的坐标;
(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简:=_____.
20、(4分)如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
21、(4分)分解因式:ab﹣b2=_____.
22、(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边形DEOF,其中正确结论的序号是_____.
23、(4分)在直角三角形中,若勾为1,股为1.则弦为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:(x+2+)÷,其中x=
25、(10分)学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:
(1)设两家复印社每月复印任务为张,分别求出甲复印社的每月复印收费y甲(元)与乙复印社的每月复印收费y乙(元)与复印任务(张)之见的函数关系式.
(2)乙复印社的每月承包费是多少?
(3)当每月复印多少页时,两复印社实际收费相同?
(4)如果每月复印页数是1200页,那么应选择哪个复印社.
26、(12分)已知 ,,求下列代数式的值:
(1)x2+y2;
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的判定:A、C、D可判定为平行四边形,而B不具备平行四边形的条件,即可得出答案。
【详解】
A、 两组对边分别平行的四边形是平行四边形,故A正确;
B、一组对边平行,另一组对边相等的四边形是等腰梯形不一定是平行四边形,故B不正确;
C、一组对边平行且相等的四边形是平行四边形, 故C正确;
D、两组对边分别相等的四边形是平行四边形,故D正确只.
本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法并能进行推理论证是解决问题的关键。
2、B
【解析】
先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.
【详解】
解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,
∴点P(x,y)的对应点P′的坐标为(-x,y+2).
故选:B.
本题考查了坐标与图形变化,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
3、C
【解析】
根据勾股定理的逆定理逐项计算即可.
【详解】
A. ∵32+42=52,∴能构成直角三角形;
B. ∵12+22=,∴能构成直角三角形;
C. ∵,∴不能构成直角三角形;
D. ∵12+=22,∴ 能构成直角三角形;
故选C.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
4、B
【解析】
根据分式的定义进行判断;
【详解】
,,,,中分式有:,,共计3个.
故选:B.
考查了分式的定义,解题关键抓住分式中分母含有字母.
5、B
【解析】
小红做抛硬币的实验,共抛了10次,4次正面朝上,6次反面朝上,则正面朝上的频数是4,反面朝上的频数是6.
故选B.
6、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:这个三角形是直角三角形,理由如下:
因为边长之比满足1:2:,
设三边分别为x、2x、x,
∵(x)2+(2x)²=(x)²,
即满足两边的平方和等于第三边的平方,
∴它是直角三角形.
故选B.
本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
7、D
【解析】
根据完全平方式的结构特征,即可求出m的值.
【详解】
解:∵是完全平方式,
∴;
故选择:D.
此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.
8、C
【解析】
解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.
【详解】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.
设所求n边形边数为n,
则(n-2)•180°=360°×3-180°,
解得n=7,
故选C.
本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.
【详解】
∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°−90°−45°=45°,
∴∠DTG=180°−∠GDT−∠CGE=180°−45°−45°=90°,
∴△DGT是等腰直角三角形,
∵两正方形的边长分别为4,8,
∴DG=8−4=4,
∴GT=×4=2.
故答案为2.
本题考查了正方形的性质,等腰直角三角形的判定与性质.关键是掌握正方形的对角线平分一组对角
10、
【解析】
用红球的个数除以总球的个数即可得出答案.
【详解】
解:∵不透明的盒子中装有2个白球和3个红球,共有5个球,
∴这个盒子中任意模出1个球、那么摸到1个红球的概率是;
故答案为:.
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
11、x>−1
【解析】
利用函数图象,写出直线y=ax+b在直线y=ax+b上方所对应的自变量的范围即可.
【详解】
解:由图可知,不等式kx>ax+b的解集为:x>−1.
故答案为:x>−1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、30°
【解析】
分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
详解:∵四边形ABCD是矩形,
∴∠ADC=90°,OA=OD,
∴∠ODA=∠DAE,
∵∠CDE =2∠ADE,
∴∠ADE=90°÷3=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为:30°.
点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
13、
【解析】
根据换元法,可得答案.
【详解】
解:设,则原方程化为,
两边都乘以y,得:,
故答案为:.
本题考查了解分式方程,利用换元法是解题关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
首先根据HL证明Rt△ECB≌Rt△EDB,得出∠EBC=∠EBD,然后根据等腰三角形三线合一性质即可证明.
【详解】
解:证明:
∵.
∴
∵
∴
在中与中,
∵,
∴ (HL)
∴,
∴(三线合一).
本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.
15、 (2) ;(2)k=-3.
【解析】
(2)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(2)根据根与系数可得出x2+x2=2(k-2),x2x2=k2,结合(x2+2)(x2+2)=2,即可得出关于k的一元二次方程,解之即可得出k值,结合(2)的结论即可得出结论.
【详解】
解:(2)∵关于x的方程x2-2(k-2)x+k2=0有两个实数根,
∴△=[-2(k-2)]2-4×2×k2≥0,
∴k≤,
∴实数k的取值范围为k≤.
(2)∵方程x2-2(k-2)x+k2=0的两根为x2和x2,
∴x2+x2=2(k-2),x2x2=k2.
∵(x2+2)(x2+2)=2,即x2x2+(x2+x2)+2=2,
∴k2+2(k-2)+2=2,
解得:k2=-3,k2=2.
∵k≤,
∴k=-3.
本题考查了根的判别式以及根与系数关系,解题的关键是:(2)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x2+2)(x2+2)=2,找出关于k的一元二次方程.
16、(1),点的坐标为;(2)详见解析;(3)1.5
【解析】
(1)把A(2,1),C(0,3)代入y1=k1x+b可求出k1和b;把A(2,1)代入(x>0)求出k2,然后把两个解析式联立起来解方程组即可求出B点坐标;
(2)观察函数图象,当x>0,两图象被A,B分成三段,然后分段判断大小以及对应的x的值;
(3)利用梯形-进行计算.
【详解】
解:(1)∵点在函数的图像上,
,解得:,
∴函数的表达式为.
∵点在函数的图像上,
,∴函数的表达式为.
由,得:或,
∴点的坐标为.
(2)如图,分别过作轴的垂线,垂足分别为,则点的坐标分别为.
由图像可知:
当时,;当时,;当时,.
(3)梯形-
.
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力.
17、见解析
【解析】
图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=,EF=,FC=,借助勾股定理确定F点.
【详解】
解:如图:
本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直是解题的关键.
18、(1);(2)2≤m≤4
【解析】
(1)根据和谐点的横坐标与纵坐标相同,设和谐点的坐标为(a,a),代入可得关于a的方程,解方程可得答案.
(2)根据和谐点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为=,从而求得a=-1,c=−,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.
【详解】
(1)设和谐点的坐标为(a,a),则a=-2a+1
解得:a=,
∴函数的图像上和谐点的坐标为.
(2)令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32﹣4ac=0,即4ac=9,
又方程的根为,
解得a=﹣1,c=.
故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,
如下图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).
由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,
∴2≤m≤4.
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,正确理解和谐点的概念是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据二次根式的乘法 ,化简即可得解.
【详解】
解:==1.
故答案为:1.
本题主要考查二次根式的乘法法则,熟悉掌握法则是关键.
20、x>1.
【解析】
把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.
21、b(a﹣b)
【解析】根据提公因式法进行分解即可,ab﹣b2=b(a﹣b),
故答案为:b(a﹣b).
22、(1)、(2)、(4).
【解析】
∵四边形ABCD是正方形,
∴AB=AD=CD=BC,∠BAD=∠ADC=90°.
∵CE=DF,
∴AD-DF=CD-CE,
即AF=DE.
在△BAF和△ADE中,
,
∴△BAF≌△ADE(SAS),
∴AE=BF,S△BAF=S△ADE,∠ABF=∠DAE,
∴S△BAF-S△AOF=S△ADE-S△AOF,
即S△AOB=S四边形DEOF.
∵∠ABF+∠AFB=90°,
∴∠EAF+∠AFB=90°,
∴∠AOF=90°,
∴AE⊥BF;
连接EF,在Rt△DFE中,∠D=90°,
∴EF>DE,
∴EF>AF,
若AO=OE,且AE⊥BF;
∴AF=EF,与EF>AF矛盾,
∴假设不成立,
∴AO≠OE.
∴①②④是正确的,
故答案是:①②④.
【点睛】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,三角形的面积关系的运用及直角三角形的性质的运用,在解答中求证三角形全等是关键.
23、
【解析】
根据勾股定理计算即可.
【详解】
解:由勾股定理得,弦=,
故答案为:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
二、解答题(本大题共3个小题,共30分)
24、,1-
【解析】
首先计算括号里面的加减,然后再计算除法,化简后再代入x的值即可.
【详解】
解:原式=×,
=•
=.
当x=-3时,原式===1-.
此题主要考查了分式的化简求值,关键是掌握分式加减和除法的计算法则.
25、(1),;(2)200;(3)800页;(4)应选择乙复印社.
【解析】
(1)根据甲乙复印社的收费方式,结合函数图象列出解析式即可;
(2)由函数图象可直接得出答案;
(3)当时,求出x即可;
(4)将x=1200分别代入两函数解析式进行计算,然后作出判断.
【详解】
解:(1)∵由甲复印社承接,按每100页40元计费;先按月付给乙复印社一定数额的承包费,则按每100页15元收费,
∴,;
(2)由函数图象可得:乙复印社的每月承包费是200元;
(3)当时,即,
解得:,
答:当每月复印800页时,两复印社实际收费相同;
(4)当x=1200时,(元),
(元),
∵380<480,
∴应选择乙复印社.
本题考查了一次函数的应用,比较简单,读懂题目信息并准确识图,理解两复印社的收费情况与复印页数的关系是解题的关键.
26、 (1) 8;(2) 4.
【解析】
将 x2+y2变形为(x+y)2-2xy,再将x+y与xy的值代入即可;
将整理为,再将x2+y2与xy的值代入即可.
【详解】
(1)∵x=+1,y=-1,
∴x+y=2,xy=2,
∴x2+y2
=(x+y)2-2xy
=(2)2-2×2
=12-4
=8.
(2)∵x=+1,y=-1,
∴x2+y2=8,xy=2,
∴+
=
=
=4.
本题考查了分式的化简求值,以及二次根式的化简求值,熟练掌握运算法则是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份黑龙江省东方红林业局中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省鸡西虎林市东方红林业局九年级数学第一学期开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份黑龙江省东方红林业局中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了一元二次方程的解是,下列事件等内容,欢迎下载使用。