年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江北安市2024-2025学年数学九上开学考试模拟试题【含答案】

    黑龙江北安市2024-2025学年数学九上开学考试模拟试题【含答案】第1页
    黑龙江北安市2024-2025学年数学九上开学考试模拟试题【含答案】第2页
    黑龙江北安市2024-2025学年数学九上开学考试模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江北安市2024-2025学年数学九上开学考试模拟试题【含答案】

    展开

    这是一份黑龙江北安市2024-2025学年数学九上开学考试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)满足下述条件的三角形中,不是直角三角形的是
    A.三个内角之比为1:2:3B.三条边长之比为1::
    C.三条边长分别为,,8D.三条边长分别为41,40,9
    2、(4分)如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=( )
    A.5cmB.cmC.cmD.cm
    3、(4分)平移直线得到直线,正确的平移方式是( )
    A.向上平移个单位长度B.向下平移个单位长度
    C.向左平移个单位长度D.向右平移个单位长度
    4、(4分)一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )
    A.7B.8C.6D.5
    5、(4分)已知是关于的方程的两个实数根,且满足,则的值为( )
    A.3B.3或C.2D.0或2
    6、(4分)如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程( )
    A.B.
    C.D.
    7、(4分)下列命题是真命题的是( )
    A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是平行四边形
    C.对角线互相平分的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形
    8、(4分)多项式m2﹣4与多项式m2﹣4m+4的公因式是( )
    A.m﹣2B.m+2C.m+4D.m﹣4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.
    10、(4分)如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“ ”或“”).
    11、(4分)在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.
    12、(4分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是__.
    13、(4分)函数y=(k+1)x﹣7中,当k满足_____时,它是一次函数.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)珠海市某中学在创建“书香校园”活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:
    (1)被抽查学生阅读时间的中位数为 h,平均数为 h;
    (2)若该校共有1500名学生,请你估算该校一周内阅读时间不少于3h的学生人数.
    15、(8分)如图,一次函数的图象与,轴分别交于,两点,点与点关于轴对称.动点,分别在线段,上(点与点,不重合),且满足.
    (1)求点,的坐标及线段的长度;
    (2)当点在什么位置时,,说明理由;
    (3)当为等腰三角形时,求点的坐标.
    16、(8分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC
    17、(10分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
    (1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
    (2)请从下列三个不同的角度对这次测试结果进行分析:
    ①从平均数和方差相结合看, 的成绩好些;
    ②从平均数和中位数相结合看, 的成绩好些;
    ③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
    18、(10分)如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)梯形ABCD中,AD∥BC,E在线段AB上,且2AE=BE,EF∥BC交CD于F,AD=15,BC=21,则EF=__________.
    20、(4分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
    21、(4分)有一组数据:2,5,5,6,7,这组数据的平均数为_____.
    22、(4分)如图,函数y1=ax和y2=-x+b的图象交于点P,则根据图象可得,二元一次方程组的解是______.
    23、(4分)不等式3x+1<-2的解集是________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.
    求:(1)两条对角线的长度;(2)菱形的面积.
    25、(10分)阅读下列材料:
    在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
    下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.
    解:设x2﹣4x=y
    原式=(y+1)(y+7)+9(第一步)
    =y2+8y+16(第二步)
    =(y+4)2(第三步)
    =(x2﹣4x+4)2(第四步)
    请根据上述材料回答下列问题:
    (1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;
    A.提取公因式法 B.平方差公式法 C.完全平方公式法
    (2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;
    (3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
    26、(12分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.
    如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
    在的前提下,求EF的最小值和此时的面积;
    当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据勾股定理的逆定理逐项判断即可.
    【详解】
    解:A、根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;
    B、,其符合勾股定理的逆定理,所以是直角三角形;
    C、,不符合勾股定理的逆定理,所以不是直角三角形;
    D、,符合勾股定理的逆定理,所以是直角三角形;
    故选C.
    本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
    2、C
    【解析】
    根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=×6×8=1,即可求DH长.
    【详解】
    由已知可得菱形的面积为×6×8=1.
    ∵四边形ABCD是菱形,
    ∴∠AOB=90°,AO=4cm,BO=3cm.
    ∴AB=5cm.
    所以AB×DH=1,即5DH=1,解得DH=cm.
    故选:C.
    主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.
    3、A
    【解析】
    根据“上加下减”法则进行判断即可.
    【详解】
    将直线向上平移个单位长度得到直线,
    故选:A.
    本题主要考查了函数图像平移的性质,熟练掌握相关平移特点是解题关键.
    4、B
    【解析】
    根据多边形的内角和公式及外角的特征计算.
    【详解】
    解:多边形的外角和是360°,根据题意得:
    110°•(n-2)=3×360°
    解得n=1.
    故选:B.
    本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
    5、A
    【解析】
    根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.
    【详解】
    解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,
    ∴m+n=-(2b+3),mn=b2,
    ∵+1=- ,
    ∴+=-1,
    ∴=-1,
    ∴=-1,
    解得:b=3或-1,
    当b=3时,方程为x2+9x+9=0,此方程有解;
    当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,
    所以b=3,
    故选:A.
    本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.
    6、B
    【解析】
    设,则,根据矩形面积公式列出方程.
    【详解】
    解:设,则,
    由题意,得.
    故选:.
    考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
    7、C
    【解析】
    根据对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直平分的四边形是菱形,即可做出解答。
    【详解】
    解:A、对角线相等的四边形是平行四边形,说法错误,应是对角线互相平分的四边形是平行四边形;B、对角线互相平分且相等的四边形是平行四边形,说法错误,应是矩形;C、对角线互相平分的四边形是平行四边形,说法正确;D、对角线互相垂直平分的四边形不一定是平行四边形,错误;故选:C.
    本题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.
    8、A
    【解析】
    根据公因式定义,对各选项整理然后即可选出有公因式的项.
    【详解】
    解:,,
    与多项式的公因式是,
    故选:A.
    此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“”.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、5
    【解析】
    解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.
    ∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.
    ∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得 x=3.
    即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5 (cm4).
    即线段BC扫过的面积为5cm4.故答案为5.
    10、<
    【解析】
    根据勾股定理即可得到结论.
    【详解】
    解:点A,B之间的距离d=<1,
    故答案为:<.
    本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
    11、答案为甲
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    【详解】
    解: =83(分),
    =82(分);
    经计算知S甲2=6,S乙2=1.
    S甲2<S乙2,
    ∴甲的平均成绩高于乙,且甲的成绩更稳定,
    故答案为甲
    本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    12、4.1
    【解析】
    首先连接OP,由矩形的两条边AB、BC的长分别为6和1,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.
    【详解】
    解:连接OP,
    ∵矩形的两条边AB、BC的长分别为6和1,
    ∴S矩形ABCD=AB•BC=41,OA=OC,OB=OD,AC=BD=,
    ∴OA=OD=5,
    ∴S△ACD=S矩形ABCD=24,
    ∴S△AOD=S△ACD=12,
    ∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,
    解得:PE+PF=4.1.
    故答案为:4.1.
    此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
    13、k≠﹣1.
    【解析】
    根据一次函数的定义即可解答.
    【详解】
    根据一次函数定义得,k+1≠0,
    解得k≠﹣1.
    故答案为:k≠﹣1.
    本题考查了一次函数的定义,熟知形如y=kx+b(k≠0)的函数是一次函数是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)2h,2.34h;(2)540.
    【解析】
    (1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;
    (2)根据总人数×阅读时间不少于三小时的百分比可得结果.
    【详解】
    (1)2h,2.34h
    (2)被抽查一周内阅读时间不少于3h的学生人数占比为:
    =36%
    1500×36%=540(人)
    答:被抽查一周内阅读时间不少于3h的学生人数为540
    此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.
    15、(1)10;(2)当点的坐标是时,;(3)点的坐标是或.
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点,的坐标,结合点与点关于轴对称可得出点的坐标,进而可得出线段的长度;
    (2)当点的坐标是时,,由点,的坐标可得出的长度,由勾股定理可求出的长度,进而可得出,通过角的计算及对称的性质可得出,,结合可证出,由此可得出:当点的坐标是时,;
    (3)分,及三种情况考虑:①当时,由(2)的结论结合全等三角形的性质可得出当点的坐标是时;②当时,利用等腰三角形的性质结合可得出,利用三角形外角的性质可得出,进而可得出此种情况不存在;③当时,利用等腰三角形的性质结合可得出,设此时的坐标是,在中利用勾股定理可得出关于的一元一次方程,解之即可得出结论.综上,此题得解.
    【详解】
    解:(1)当时,,
    点的坐标为;
    当时,,解得:,
    点的坐标为;
    点与点关于轴对称,
    点的坐标为,
    .
    (2)当点的坐标是时,,理由如下:
    点的坐标为,点的坐标为,

    .
    ,,,
    .
    和关于轴对称,
    .
    在和中,
    .
    当点的坐标是时,.
    (3)分为三种情况:
    ①当时,如图1所示,由(2)知,当点的坐标是时,

    此时点的坐标是;
    ②当时,则,

    .
    而根据三角形的外角性质得:,
    此种情况不存在;
    ③当时,则,
    ,如图2所示.
    设此时的坐标是,
    在中,由勾股定理得:


    解得:,
    此时的坐标是.
    综上所述:当为等腰三角形时,点的坐标是或.
    本题考查了一次函数图象上点的坐标特征、两点间的距离、勾股定理、对称的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征及对称的性质,找出点,,的坐标;(2)利用全等三角形的判定定理找出当点的坐标是时;(3)分,及三种情况求出点的坐标.
    16、证明见解析
    【解析】
    延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.
    【详解】
    证明:延长DE到F,使EF=DE.连接CF.
    在△ADE和△CFE中,
    ∵AE=CE,∠AED=∠CEF,DE=FE,
    ∴△ADE≌△CFE.
    ∴AD=CF,∠A=∠ECF
    ∴AD∥CF,
    即BD∥CF.
    又∵BD=AD=CF,
    ∴四边形DBCF是平行四边形.
    ∴DE∥BC,且DF=BC.
    ∴DE=DF=BC.
    本题考查三角形的中位线定理的证明,解题关键是掌握等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.
    17、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.
    【解析】
    分析: (1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.
    (2)①可分别从平均数和方差两方面着手进行比较;
    ②可分别从平均数和中位数两方面着手进行比较;
    ③可从具有培养价值方面说明理由.
    详解:
    解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,
    乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,
    乙的中位数:(7+8)÷2=7.5,
    填表如下:
    (2)①从平均数和方差相结合看,甲的成绩好些;
    ②从平均数和中位数相结合看,乙的成绩好些;
    ③选乙参加.
    理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.
    故答案为:(1)1.2,7,7.5;(2)①甲;②乙.
    点睛: 本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.
    18、答案见解析
    【解析】
    首先连接AC交EF于点O,由平行四边形ABCD的性质,可知OA=OC,OB=OD,又因为BE=DF,可得OE=OF,即可判定AECF是平行四边形.
    【详解】
    证明:连接AC交EF于点O;
    ∵平行四边形ABCD
    ∴OA=OC,OB=OD
    ∵BE=DF,
    ∴OE=OF
    ∴四边形AECF是平行四边形.
    此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、17
    【解析】
    过作构造平行四边形及相似三角形,利用平行四边形及相似三角形的性质可得答案.
    【详解】
    如图,过作交于,交于,因为AD∥BC,EF∥BC,
    所以四边形 四边形,四边形都为平行四边形,则,
    因为,所以,
    因为EF∥BC,所以,所以,
    因为2AE=BE,,,
    所以,所以,所以.
    故答案为:.
    本题考查等腰梯形中通过作腰的平行线构造平行四边形及相似三角形,考查平行四边形的性质及相似三角形的性质,掌握这些性质是解题的关键.
    20、
    【解析】
    作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.
    【详解】
    解:作AM⊥BC于E,如图所示:
    ∵CD平分∠ACB,
    ∴,
    设AC=2x,则BC=3x,
    ∵MN是BC的垂直平分线,
    ∴MN⊥BC,BN=CN=x,
    ∴MN∥AE,
    ∴,
    ∴NE=x,
    ∴BE=BN+EN=x,CE=CN−EN=x,
    由勾股定理得:AE2=AB2−BE2=AC2−CE2,
    即52−(x)2=(2x)2−(x)2,
    解得:x=,
    ∴AC=2x=;
    故答案为.
    本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.
    21、1.
    【解析】
    把给出的这1个数据加起来,再除以数据个数1,就是此组数据的平均数.
    【详解】
    解:(2+1+1+6+7)÷1
    =21÷1
    =1.
    答:这组数据的平均数是1.
    故答案为:1.
    此题主要考查了平均数的意义与求解方法,关键是把给出的这1个数据加起来,再除以数据个数1.
    22、
    【解析】
    先根据函数图象确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.
    【详解】
    解:由图可得,函数y1=ax和y2=-x+b的图象交于点P(2,3),
    ∴二元一次方程组的解是,
    故答案为:.
    本题考查了一次函数与二元一次方程(组),解题时注意:方程组的解就是两个相应的一次函数图象的交点坐标.
    23、.
    【解析】
    试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.
    考点:一元一次不等式的解法.
    二、解答题(本大题共3个小题,共30分)
    24、(1)AC=2cm,BD=2cm;(2)2 cm2
    【解析】
    (1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;
    (2)由菱形的面积等于其对角线积的一半,即可求得答案.
    【详解】
    (1)∵四边形ABCD是菱形,
    ∴AB=BC,AC⊥BD,AD∥BC,
    ∴∠ABC+∠BAD=180°,
    ∵∠ABC与∠BAD的度数比为1:2,
    ∴∠ABC=×180°=60°,
    ∴∠ABO=∠ABC=30°,
    ∵菱形ABCD的周长是8cm.
    ∴AB=2cm,
    ∴OA=AB=1cm

    ∴AC=2OA=2cm,BD=2OB=2cm;
    (2)S菱形ABCD=(cm2).
    此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
    25、(1)C;(2)(x﹣2)1;(3)(x+1)1.
    【解析】
    (1)根据完全平方公式进行分解因式;
    (2)最后再利用完全平方公式将结果分解到不能分解为止;
    (3)根据材料,用换元法进行分解因式.
    【详解】
    (1)故选C;
    (2)(x2﹣1x+1)(x2﹣1x+7)+9,设x2﹣1x=y,则:
    原式=(y+1)(y+7)+9=y2+8y+16=(y+1)2=(x2﹣1x+1)2=(x﹣2)1.
    故答案为:(x﹣2)1;
    (3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)1.
    本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
    26、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.
    【解析】
    先证明和是等边三角形,再证明≌,可得结论;
    由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;
    同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.
    【详解】

    证明:、F的速度相同,且同时运动,

    又四边形ABCD是菱形,



    是等边三角形,
    同理也是等边三角形,

    在和中,

    ≌,

    由得:≌,



    是等边三角形,

    如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,
    ,,

    的最小值是,
    中,,,



    如图3,当点E运动到DC边上时,大小不发生变化,
    在和中,

    ≌,






    、B、M、D四点共圆,

    此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得≌是解此题的关键.
    题号





    总分
    得分
    批阅人
    平均数
    方差
    中位数

    7

    7


    5.4

    平均数
    方差
    中位数

    7
    1.2
    7

    7
    5.4
    7.5

    相关试卷

    黑龙江省北安市第四中学2024年九上数学开学学业水平测试试题【含答案】:

    这是一份黑龙江省北安市第四中学2024年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省黑河北安市九上数学开学经典试题【含答案】:

    这是一份2024年黑龙江省黑河北安市九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省菏泽数学九上开学考试模拟试题【含答案】:

    这是一份2024-2025学年山东省菏泽数学九上开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map