终身会员
搜索
    上传资料 赚现金

    2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】第1页
    2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】第2页
    2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】

    展开

    这是一份2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是( )
    A.自行车发生故障时离家距离为1000米
    B.学校离家的距离为2000米
    C.到达学校时共用时间20分钟
    D.修车时间为15分钟
    2、(4分)下列命题中,错误的是( ).
    A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形
    C.正方形的对角线互相垂直平分D.等腰三角形底边上的中点到两腰的距离相等
    3、(4分)下列各式正确的是( )
    A.B.C.D.
    4、(4分)关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为( )
    A.1B.2C.3D.7
    5、(4分)如图,下列哪组条件不能判定四边形ABCD是平行四边形( )
    A.AB∥CD,AB=CDB.AB∥CD,AD∥BC
    C.OA=OC,OB=ODD.AB∥CD,AD=BC
    6、(4分)若关于x的方程=0有增根,则m的值是
    A.3B.2C.1D.-1
    7、(4分)若,,,是直线上的两点,当时,有,则的取值范围是
    A.B.C.D.
    8、(4分)如图,已知直线经过二,一,四象限,且与两坐标轴交于A,B两点,若,是该直线上不重合的两点.则下列结论:①;②的面积为;③当时,;④.其中正确结论的序号是( )
    A.①②③B.②③C.②④D.②③④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.
    10、(4分)反比例函数图像上三点的坐标分别为A(-1,y1),B(1,y2),C(3,y3),则y1,y2,,y3的大小关系是_________。(用“>”连接)
    11、(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.
    12、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
    13、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
    (1)求A,B两型桌椅的单价;
    (2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;
    (3)求出总费用最少的购置方案.
    15、(8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.
    根据图表中提供的信息,回答下列问题:
    (1)女生身高在B组的有________人;
    (2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);
    (3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.
    16、(8分)解下列方程:
    (1)
    (2)
    17、(10分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
    (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
    (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
    (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
    18、(10分)将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,
    (1)试判断四边形DHBG为何种特殊的四边形,并说明理由;
    (2)若AB=8,AD=4,求四边形DHBG的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “如果 a=b,那么 a2=b2”,写出此命题的逆命题_______.
    20、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
    21、(4分)直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.
    22、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
    23、(4分)如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.
    25、(10分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
    (1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
    26、(12分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
    (1)根据上图填写下表:
    (2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
    (3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    观察图象,明确每一段小明行驶的路程、时间,作出判断.
    【详解】
    、自行车发生故障时离家距离为米,正确;
    、学校离家的距离为米,正确;
    、到达学校时共用时间分钟,正确;
    、由图可知,修车时间为分钟,可知错误.
    故选:.
    此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
    2、B
    【解析】
    根据矩形,正方形的性质判断A,C,根据菱形的判定方法判断B,根据等腰三角形的性质判断D.
    【详解】
    解:A、矩形的对角线互相平分且相等,故正确; B、对角线互相垂直平分的四边形是菱形,故B错误; C、正方形的对角线互相垂直平分,正确; D、等腰三角形底边上的中点到两腰的距离相等,正确,
    故选:B.
    本题考查了命题与定理的知识,解题的关键是能够了解矩形,正方形的性质,等腰三角形的性质,菱形的判定,掌握相关知识点是关键.
    3、D
    【解析】
    对于选项A,给的分子、分母同时乘以a可得,由此即可作出判断;
    对于选项B、C,只需取一对特殊值代入等式两边,再判断两边的值是否相等即可;
    对于选项D,先对的分子、分母分别因式分解,再约分即可判断.
    【详解】
    对于A选项,只有当a=b时,故A选项错误;
    对于B选项,可用特殊值法,令a=2、b=3,则,因此B选项是错误;
    同样的方法,可判断选项C错误;
    对于D选项,=,因此D选项是正确.
    故选D
    本题可以根据分式的基本性质和因式分解的知识进行求解。
    4、C
    【解析】
    根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.
    【详解】
    解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0
    解得b=1.
    故选C.
    点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    5、D
    【解析】
    平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
    【详解】
    根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.
    故选D.
    此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
    6、B
    【解析】
    试题分析:若关于x的方程=0有增根,则x=1为增根.
    把方程去分母可得m-1-x=0,把x=1代入可得m-1-1=0,解得m=2.
    考点:分式方程
    点评:本题难度较低,主要考查学生对分式方程知识点的掌握,增根使分式分母为零.
    7、B
    【解析】
    x1<x2时,有y1>y2,说明y随x的最大而减小,即可求解.
    【详解】
    时,有,说明随的最大而减小,
    则,即,
    故选.
    本题考查的是一次函数图象上点的坐标特征,主要分析y随x的变化情况即可.
    8、B
    【解析】
    根据直线经过的象限即可判定①结论错误;求出点A、B坐标,即可求出的面积,可判定②结论正确;直接观察图像,即可判定③结论正确;将两点坐标代入,进行消元,即可判定④结论错误.
    【详解】
    ∵直线经过二,一,四象限,

    ∴,①结论错误;
    点A,B
    ∴OA=,OB=
    ,②结论正确;
    直接观察图像,当时,,③结论正确;
    将,代入直线解析式,得
    ∴,④结论错误;
    故答案为B.
    此题主要考查一次函数的图像和性质,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4.1
    【解析】
    分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.
    【详解】
    若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;
    若众数为1,则数据为1、1、1、7,中位数为1,符合题意,
    此时平均数为=4.1;
    若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;
    故答案为:4.1.
    本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.
    10、
    【解析】
    此题可以把点A、B、C的横坐标代入函数解析式求出各纵坐标后再比较大小.
    【详解】
    解:当x=-1时,y1= ;
    当x=1时,y2=;
    当x=3时,y3=;
    故y1>y3>y2.
    本题考查反比例函数图象上点的坐标特征,对于此类问题最简单的办法就是将x的值分别代入函数解析式中,求出对应的y再比较大小.也可以画出草图,标出各个点的大致位置坐标,再比较大小.
    11、1
    【解析】
    如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.
    【详解】
    解:如图,作PH⊥OB于H.
    ∵∠POA=∠POB,PH⊥OB,PD⊥OA,
    ∴PH=PD=3cm,
    ∵PC∥OA,
    ∴∠POA=∠CPO=15°,
    ∴∠PCH=∠COP+∠CPO=30°,
    ∵∠PHC=90°,
    ∴PC=2PH=1cm.
    故答案为1.
    本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    12、1
    【解析】
    试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
    试题解析:∵CE∥BD,DE∥AC,
    ∴四边形CODE是平行四边形,
    ∵四边形ABCD是矩形,
    ∴AC=BD=4,OA=OC,OB=OD,
    ∴OD=OC=AC=2,
    ∴四边形CODE是菱形,
    ∴四边形CODE的周长为:4OC=4×2=1.
    考点: 1.菱形的判定与性质;2.矩形的性质.
    13、1
    【解析】
    根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.
    【详解】
    根据图象可知 位于线段BC上,
    设线段BC的解析式为
    将代入解析式中得
    解得
    ∴线段BC解析式为 ,
    当时,,
    ∴乘坐该出租车8(千米)需要支付的金额为1元.
    故答案为:1.
    本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.
    【解析】
    (1)根据“2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元”,建立方程组即可得出结论;
    (2)根据题意建立函数关系式,由A型桌椅不少于120套,B型桌椅不少于70套,确定出x的范围;
    (3)根据一次函数的性质,即可得出结论.
    【详解】
    (1)设A型桌椅的单价为a元,B型桌椅的单价为b元,
    根据题意知,,
    解得,,
    即:A,B两型桌椅的单价分别为600元,800元;
    (2)根据题意知,y=600x+800(200﹣x)+200×10=﹣200x+162000(120≤x≤130),
    (3)由(2)知,y=﹣200x+162000(120≤x≤130),
    ∴当x=130时,总费用最少,
    即:购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.
    本题考查一次函数的应用,二元一次方程的应用,一元一次不等式组的应用,读懂题意,列出方程组或不等式是解本题的关键.
    15、(1)12;(2)16;C;(3) 541人.
    【解析】
    先计算出B组所占百分之再求即可
    将位于这一小组内的频数相加即可求得结果;
    分别计算男、女生的人数,相加即可得解.
    【详解】
    解:(1)女生身高在B组的人数有40×(1−30%−20%−15%−5%)=12人;
    (2) 在样本中,身高在150⩽x

    相关试卷

    2024-2025学年黑龙江省哈尔滨市五常市数学九上开学联考模拟试题【含答案】:

    这是一份2024-2025学年黑龙江省哈尔滨市五常市数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省哈尔滨市平房区数学九上开学复习检测试题【含答案】:

    这是一份2024-2025学年黑龙江省哈尔滨市平房区数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map