开学活动
搜索
    上传资料 赚现金

    河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】

    河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】第1页
    河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】第2页
    河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】

    展开

    这是一份河南省长葛市第一初级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )
    A.直角三角形的面积
    B.最大正方形的面积
    C.较小两个正方形重叠部分的面积
    D.最大正方形与直角三角形的面积和
    2、(4分)如图所示,E、F分别是□ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=2cm2,S△BQC=4cm2,则阴影部分的面积为( )
    A.6 cm2B.8 cm2C.10 cm2D.12 cm2
    3、(4分)使代数式有意义的x的取值范围是( )
    A.x≥0B.C.x取一切实数D.x≥0且
    4、(4分)如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b的表达式为( )
    A.B.C.D.
    5、(4分)如图,的对角线,相交于点,点为中点,若的周长为28,,则的周长为( )
    A.12B.17C.19D.24
    6、(4分)如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为( )
    A.B.C.D.
    7、(4分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
    A.测量对角线,看是否互相平分
    B.测量两组对边,看是否分别相等
    C.测量对角线,看是否相等
    D.测量对角线的交点到四个顶点的距离,看是否都相等
    8、(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数()经过点,则不等式的解集为__________.
    10、(4分)当x=________时,分式的值为零.
    11、(4分)如图,在△MBN 中,已知:BM=6,BN=7,MN=10,点 A C,D 分别是 MB,NB,MN 的中点,则四边形 ABCD 的周长 是_____.
    12、(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.
    13、(4分)如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:(2+3)2﹣2×÷5.
    15、(8分)在正方形ABCD中.
    (1)如图1,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,试判断AE与BF的数量关系,并说明理由;
    (2)如图2,点E、F、G、H分别在边BC、CD、DA、AB上,EG、FH相交于点O,∠GOH=90°,且EG=7,求FH的长;
    (3)如图3,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为4:5,求△ABO的周长.
    16、(8分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.
    在图甲中画一个以AB为对角线的平行四边形.
    在图乙中画一个以AB为边的矩形.
    17、(10分)如图,在平行四边形ABCD中,AE、AF是平行四边形的高,,,,DE交AF于G.
    (1)求线段DF的长;
    (2)求证:是等边三角形.
    18、(10分)如图1,平行四边形ABCD在平面直角坐标系中,A、B(点A在点B的左侧)两点的横坐标是方程的两个根,点D在y轴上其中.
    (1)求平行四边形ABCD的面积;
    (2)若P是第一象限位于直线BD上方的一点,过P作于E,过E作轴于H点,作PF∥y轴交直线BD于F,F为BD中点,其中△PEF的周长是;若M为线段AD上一动点,N为直线BD上一动点,连接HN,NM,求的最小值,此时y轴上有一个动点G,当最大时,求G点坐标;
    (3)在(2)的情况下,将△AOD绕O点逆时针旋转60°后得到如图2,将线段沿着x轴平移,记平移过程中的线段为,在平面直角坐标系中是否存在点S,使得以点,,E,S为顶点的四边形为菱形,若存在,请求出点S的坐标,若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)不等式9﹣3x>0的非负整数解的和是_____.
    20、(4分)如图,已知, AD平分于点E, ,则BC= ___cm。
    21、(4分)直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.
    22、(4分)若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
    23、(4分)请你写出一个有一根为0的一元二次方程:______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
    (1)求证:四边形ABCD是矩形;
    (2)若DE=3,OE=9,求AB、AD的长;
    25、(10分)先化简,再求值:(+a﹣2)÷,其中a=+1.
    26、(12分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.
    (1)猜想∠MAN的大小是否变化,并说明理由;
    (2)如图1,当N点恰为BC中点时,求DM的长度;
    (3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据勾股定理得到c1=a1+b1,根据正方形的面积公式、长方形的面积公式计算即可.
    【详解】
    设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,
    由勾股定理得,c1=a1+b1,
    阴影部分的面积=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),
    较小两个正方形重叠部分的长=a-(c-b),宽=a,
    则较小两个正方形重叠部分底面积=a(a+b-c),
    ∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,
    故选C.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
    2、A
    【解析】
    连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.
    【详解】
    连接E、F两点,
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴△EFC的FC边上的高与△BCF的FC边上的高相等,
    ∴S△EFC=S△BCF,
    ∴S△EFQ=S△BCQ,
    同理:S△EFD=S△ADF,
    ∴S△EFP=S△ADP,
    ∵S△APD=1cm1,S△BQC=4cm1,
    ∴S四边形EPFQ=6cm1,
    故阴影部分的面积为6cm1.
    故选A.
    本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.
    3、D
    【解析】
    试题分析:根据题意可得:当x≥0且3x﹣1≠0时,代数式有意义,
    解得:x≥0且.故选D.
    考点:1.二次根式有意义的条件;2.分式有意义的条件.
    4、B
    【解析】
    根据等腰直角三角形的性质和三角函数分别求B、C两点的坐标,利用待定系数法求直线的表达式.
    【详解】
    ∵A点坐标为(1,0),
    ∴OA=1,
    ∵∠BCA=60°,∠α=101°,
    ∴∠BAC=101°﹣60°=41°,
    ∴△AOB是等腰直角三角形,
    ∴AO=BO=1,
    ∴B(0,1).
    ∵∠CBO=90°﹣∠BCA=30°,
    ∴BC=2CO,BO==CO=1,
    ∴CO=,
    ∴C(﹣,0),
    把B(0,1)和C(﹣,0)代入y=kx+b中得:,
    解得:,
    ∴直线BC的表达式为:y=x+1.
    故选B.
    本题考查了利用待定系数法求直线的解析式、含30度角的直角三角形、等腰直角三角形的性质及图形与坐标特点,熟练掌握图形与坐标特点是本题的关键.
    5、A
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的性质可得OB=OD,再由E是CD中点,即可得BE=BC,OE是△BCD的中位线,由三角形的中位线定理可得OE=AB, 再由▱ABCD的周长为28,BD=10, 即可求得AB+BC=14,BO=5,由此可得BE+OE=7, 再由△OBE的周长为=BE+OE+BO即可求得△OBE的周长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴O是BD中点, OB=OD,
    又∵E是CD中点,
    ∴BE=BC,OE是△BCD的中位线,
    ∴OE=AB,
    ∵▱ABCD的周长为28,BD=10,
    ∴AB+BC=14,
    ∴BE+OE=7,BO=5
    ∴△OBE的周长为=BE+OE+BO=7+5=1.
    故选A.
    本题考查了平行四边形的性质及三角形的中位线定理,熟练运用性质及定理是解决问题的关键.
    6、A
    【解析】
    先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.
    【详解】
    ∵A(5,0)和B(0,4),
    ∴OA=5,OB=4,
    ∴AB=,即这两点之间的距离是.
    故选A.
    本题考查了勾股定理的应用,根据坐标得出OA及OB的长是解题关键.
    7、D
    【解析】
    根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;
    (2)有三个角是直角的四边形是矩形;
    (3)对角线互相平分且相等的四边形是矩形.
    【详解】
    解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;
    B、两组对边是否分别相等,能判定平行四边形,故本选项错误;
    C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;
    D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.
    故选:D.
    本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.
    8、B
    【解析】
    试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.
    解:∵点(k,b)为第四象限内的点,
    ∴k>0,b<0,
    ∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.
    故选B.
    考点:一次函数的图象.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.
    【详解】
    解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,
    则k(x-3)+b<0化为k(x-3)+k<0,
    而k<0,
    所以x-3+1>0,
    解得x>1.
    故答案为x>1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    10、3
    【解析】
    根据分式值为0的条件:分子为0,分母不为0,即可得答案.
    【详解】
    ∵分式的值为零,
    ∴x-3=0,x+5≠0,
    解得:x=3,
    故答案为:3
    本题考查分式值为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式值为0的条件是解题关键.
    11、13
    【解析】
    根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长
    【详解】
    ∵点A,C,D分别是MB,NB,MN的中点,
    ∴CD∥AB,AD∥BC,
    ∴四边形ABCD为平行四边形,
    ∴AB=CD,AD=BC.
    ∵BM=6,BN=7,点A,C分别是MB,NB的中点,
    ∴AB=3,BC=3.5,
    ∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.
    故答案为13
    本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.
    12、6.5
    【解析】
    试题分析:依题意作图可知EF为Rt△ABC中位线,则EF=AB.在Rt△ABC中AB=
    所以EF=6.5
    考点:中位线定理
    点评:本题难度较低,主要考查学生对三角形中位线定理知识点的掌握.
    13、16cm2
    【解析】
    根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.
    【详解】
    解:∵点A、B、C、D分别是四个正方形的中心
    ∴每一个阴影部分的面积等于正方形的
    ∴正方形重叠的部分(阴影部分)面积和
    故答案为:
    本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、35+12﹣.
    【解析】
    根据完全平方公式、二次根式的乘除法和减法可以解答本题.
    【详解】
    (2+3)2﹣2×÷5.

    =35+12﹣.
    本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
    15、(1)AE=BF,理由见解析;(2)FH=7;(3)△AOB的周长为5+
    【解析】
    (1)由四边形ABCD是正方形可得AB=BC,∠ABE=∠BCF=90°,根据余角的性质可得∠BAO=∠CBF,然后根据ASA可证△ABE≌△BCF,进而可得结论;
    (2)如图4,作辅助线,构建平行四边形AMEG和平行四边形BNFH,得AM=GE,BN=FH,由(1)题的结论知△ABM≌△BCN,进而可得FH的长;
    (3)根据正方形的面积和阴影部分的面积可得:空白部分的面积为25-20=5,易得△AOB的面积与四边形OECF的面积相等,设AO=a,BO=b,则易得ab=5,根据勾股定理得:a2+b2=52,然后根据完全平方公式即可求出a+b,进一步即得结果.
    【详解】
    解:(1)AE=BF,理由是:如图1,∵四边形ABCD是正方形,
    ∴AB=BC,∠ABE=∠BCF=90°,
    ∵∠AOB=90°,∴∠BAO+∠ABO=90°,
    又∵∠CBF+∠ABO=90°,∴∠BAO=∠CBF,
    ∴△ABE≌△BCF(ASA).
    ∴AE=BF;
    (2)在图2中,过点A作AM∥GE交BC于M,过点B作BN∥FH交CD于N,AM与BN交于点O′,如图4,则四边形AMEG和四边形BNFH均为平行四边形,
    ∴AM=GE,BN=FH,
    ∵∠GOH=90°,AM∥GE,BN∥FH,∴∠AO′B=90°,
    由(1)得,△ABM≌△BCN,∴AM=BN,
    ∴FH=GE=7;
    (3)如图3,∵阴影部分的面积与正方形ABCD的面积之比为4:5,
    ∴阴影部分的面积为×25=20,∴空白部分的面积为25-20=5,
    由(1)得,△ABE≌△BCF,
    ∴△AOB的面积与四边形OECF的面积相等,均为×5=,
    设AO=a,BO=b,则ab=,即ab=5,
    在Rt△AOB中,∠AOB=90°,∴a2+b2=52,
    ∴a2+2ab+b2=25+10=35,即,
    ∴a+b=,即AO+BO=,
    ∴△AOB的周长为5+.
    本题是四边形的综合题,主要考查了正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质、三角形和多边形的面积以及完全平方公式的运用,属于常考题型,熟练掌握上述知识、灵活应用整体的思想是解题的关键.
    16、(1)作图见解析;(2)作图见解析.
    【解析】
    直接利用平行四边形的性质得出符合题意的图形;
    直接利用矩形的性质得出符合题意的图形.
    【详解】
    如图甲所示:四边形ACBD是平行四边形;
    如图乙所示:四边形ABCD是矩形.
    此题主要考查了应用设计与作图,正确把握平行四边形以及矩形的性质是解题关键.
    17、(1);(2)是等边三角形,见解析.
    【解析】
    (1)根据AE、AF是平行四边形ABCD的 高,得 ,,又,,所以有﹐,则求出CD,再根据,则可求出DF的长;(2)根据三角形内角和定理求出,求出,再求出,则可证明.
    【详解】
    解:(1)∵在平行四边形ABCD中AE、AF是高,
    ∴,,
    ∴,,
    ∵中,,
    ∴﹐,
    ∵四边形ABCD是平行四边形,,,
    ∴,,
    ∵,,∴,
    (2)证明:∵中,,
    ∴,∴,
    ∵四边形ABCD是平行四边形,,
    ∴,,∴
    ∴,∴,
    ∵由(1)知∴
    ∵,,∴,
    ∴,
    ∴是等边三角形.
    本题考查了平行四边形的性质、三角形内角和定理、等边三角形的判定等知识点,熟练掌握性质及定理是解题的关键.
    18、(1)S平行四边形ABCD=48;(2)G(0,),见解析;(3)满足条件的点S的坐标为或或,见解析.
    【解析】
    (1)解方程求出A,B两点坐标,在Rt△AOD中,求出OD即可解决问题.
    (2)首先证明△EHB也是等腰直角三角形,以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT.在Rt△DMT中,易知MT= DM,根据对称性可知:NH=NJ,推出HN+MM-DM=NJ+MN-MT≤JT,推出当JT最小时,HN+MM-DM的值最小.如图2中当点M在JQ的延长线上时,HN+MM-DM的值最小,此时M(-,5),作点M关于y轴对称点M′,连接CM′,延长CM′交y轴于点G,此时|CG-MG|最大,求出直线CM′的解析式即可解决问题.
    (3)分五种情形分别画出图形,利用菱形的性质,中点坐标公式等知识一一求解即可.
    【详解】
    解:(1)由得到x=-2或1;
    ∴A(-2,0),B(1,0);
    在Rt△ADO中,∵∠AOD=90°,AD=2 ,OA=2;

    ∵OB=1,
    ∴OD=OB=1,
    ∴△BOD是等腰直角三角形,
    ∴S平行四边形ABCD=AB•OD=8×1=48;
    (2)如图1中,
    ∵EH⊥OB,
    ∴∠EHB=90°,
    ∵△BOD是等腰直角三角形,
    ∴∠EBH=45°,
    ∴△EHB也是等腰直角三角形,
    以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT,在Rt△DMT中,易知MT=DM,
    ∵四边形EHBJ是正方形,
    根据对称性可知:NH=NJ,
    ∴HN+MM-DM=NJ+MN-MT≤JT,
    ∴当JT最小时,HN+MM-DM的值最小,
    ∵JT≤JQ,
    ∴JT≤OB=1,
    ∴HN+MM-DM的最小值为1.
    如图2中,∵PF∥y轴,
    ∴∠PFE=∠ODB=45°,
    ∴△PEF是等腰直角三角形,设PE=EF=a,则PF=a,
    由题意2a+a=4+4,
    ∴a=2,
    ∵FB=FD,
    ∴F(3,3),
    ∴E(1,5),
    ∴当点M在JQ的延长线上时,HN+MM-DM的值最小,此时M(-,5),作点M关于y轴对称点M′,连接CM′,延长CM′交y轴于点G,此时|CG-MG|最大,
    ∵C(8,1),M′(,5),
    ∴直线CM′的解析式为,
    ∴G(0,);
    (3)存在.设菱形的对角线的交点为J.
    ①如图3-1中,当O′D″是对角线时,设ES交x轴于T.
    ∵四边形EO′SD″是菱形,
    ∴ES⊥O′D″,
    ∴直线ES的解析式为,
    ∴T,
    在Rt△JTO′中,易知O′J=3,∠TO′J=30°,
    ∴O′T=2,

    ∵JE=JS,
    ∴可得S,
    ②如图3-2中,当EO′=O′D″=1时,可得四边形SEO′D″是菱形,设O′(m,0).
    则有:(m-1)2+52=31,
    ∴m=1+或1- ,
    ∴O′(1+,0)或(1-,0)(如图3-3中),
    ∴D″(1+-3,3),
    ∴;
    ∵JS=JO′,

    ③如图3-3中,当EO′=O′D″时,由②可知O′(1-,0).同法可得
    ④如图3-4中,当ED″=D″O′=1时,可得四边形ESO′D″是菱形.
    设D″(m,3),则(m-1)2+22=31,
    ∴m=1+4 (图5中情形),或m=1-4,

    ,
    ∵JD″=JS,
    ∴可得S(1+3 ,2),
    ⑤如图3-5中,当D″E=D″O时,由④可知D″(1+4 ,3),


    ∵JD″=JS,
    ∴可得S(1+3,2),
    综上所述,满足条件的点S的坐标为或或.
    本题属于四边形综合题,考查了平行四边形的性质,菱形的性质,轴对称最短问题,解直角三角形,中点坐标公式,一次函数的应用等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用轴对称解决最值问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    先根据不等式的性质求出不等式的解集,再找出不等式的非负整数解相加即可.
    【详解】
    所以不等式的非负整数解为0,1,2
    则所求的和为
    故答案为:1.
    本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键.
    20、1
    【解析】
    过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,然后求出CD、BD的长度,即可得解.
    【详解】
    解:如图,过点D作DE⊥AB于E,
    ∵点D到AB的距离等于5cm,
    ∴DE=5cm,
    ∵AD平分∠BAC,∠C=90°,
    ∴DE=CD=5cm,
    ∵BD=2CD,
    ∴BD=2×5=10cm,
    ∴BC=CD+BD=5+10=1cm.
    故答案为:1.
    本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.
    21、
    【解析】
    利用勾股定理直接计算可得答案.
    【详解】
    解:由勾股定理得:斜边
    故答案为:.
    本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.
    22、1
    【解析】
    试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
    ∵正多边形的一个内角是140°,
    ∴它的外角是:180°-140°=40°,
    360°÷40°=1.
    故答案为1.
    考点:多边形内角与外角.
    23、
    【解析】
    根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
    【详解】
    可以是,=0等.
    故答案为:
    本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) 见解析;(2) AB、AD的长分别为3和1
    【解析】
    (1)根据全等三角形的判定和性质以及矩形的判定解答即可;
    (2)根据全等三角形的性质和勾股定理解答即可.
    【详解】
    证明:(1)∵AB⊥OM于B,DE⊥ON于E,
    ∴∠ABO=∠DEA=90°.
    在Rt△ABO与Rt△DEA中,

    ∴Rt△ABO≌Rt△DEA(HL)
    ∴∠AOB=∠DAE.
    ∴AD∥BC.
    又∵AB⊥OM,DC⊥OM,
    ∴AB∥DC.
    ∴四边形ABCD是平行四边形,
    ∵∠ABC=90°,
    ∴四边形ABCD是矩形;
    (2)由(1)知Rt△ABO≌Rt△DEA,
    ∴AB=DE=3,
    设AD=x,则OA=x,AE=OE﹣OA=9﹣x.
    在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,
    解得x=1.
    ∴AD=1.即AB、AD的长分别为3和1.
    此题考查矩形的判定与性质以及勾股定理.注意利用勾股定理求线段AD的长是解题关键.
    25、,2﹣.
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
    【详解】
    解:原式=
    ==,
    当a=+1时,
    原式==2﹣.
    本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    26、(1)∠MAN的大小没有变化,理由见解析;(2);(3).
    【解析】
    (1)由折叠知AD=AE、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,再证Rt△BAN≌Rt△EAN得∠BAN=∠EAN=∠BAE,根据∠MAN=∠EAM+∠EAN=(∠DAE+∠BAE)可得答案;
    (2)由题意知EN=BN=CN=1,设DM=EM=x,则MC=2-x、MN=1+x,在Rt△MNC中,由MC2+CN2=MN2列出关于x的方程求解可得;
    (3)将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,由旋转知DG=BQ=,AG=AQ,∠ADG=∠ABQ=∠ADB=45°,∠BAQ=∠DAG,证△GAH≌△QAH得GH=QH,设GH=QH=a,得BD=AB=2,BQ=,DQ=,DH=-a,在Rt△DGH中,由DG2+DH2=GH2可得关于a的方程,解之可得答案.
    【详解】
    (1)∠MAN的大小没有变化,
    ∵将△ADM沿AM折叠得到△AME,
    ∴△ADM≌△AEM,
    ∴AD=AE=2、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,
    又∵AD=AB=2、∠D=∠B=90°,
    ∴AE=AB、∠B=∠AEM=∠AEN=90°,
    在Rt△BAN和Rt△EAN中,
    ∵,
    ∴Rt△BAN≌Rt△EAN(HL),
    ∴∠BAN=∠EAN=∠BAE,
    则∠MAN=∠EAM+∠EAN=∠DAE+∠BAE=(∠DAE+∠BAE)=∠BAD=45°,
    ∴∠MAN的大小没有变化;
    (2)∵N点恰为BC中点,
    ∴EN=BN=CN=1,
    设DM=EM=x,则MC=2﹣x,
    ∴MN=ME+EN=1+x,
    在Rt△MNC中,由MC2+CN2=MN2可得(2﹣x)2+12=(1+x)2,
    解得:x=,即DM=;
    (3)如图,将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,
    则△ABQ≌△ADG,
    ∴DG=BQ=、AG=AQ、∠ADG=∠ABQ=∠ADB=45°、∠BAQ=∠DAG,
    ∵∠MAN=∠BAD=45°,
    ∴∠BAQ+∠DAM=∠DAG+∠DAM=∠GAH=45°,
    则∠GAH=∠QAH,
    在△GAH和△QAH中,
    ∵,
    ∴△GAH≌△QAH(SAS),
    ∴GH=QH,
    设GH=QH=a,
    ∵BD=AB=2,BQ=,
    ∴DQ=BD﹣BQ=,
    ∴DH=﹣a,
    ∵∠ADG=∠ADH=45°,
    ∴∠GDH=90°,
    在Rt△DGH中,由DG2+DH2=GH2可得()2+(﹣a)2=a2,
    解得:a=,即QH=.
    本题主要考查四边形的综合问题,解题的关键是熟练掌握正方形的性质、全等三角形的判定与性质及旋转的性质等知识点.
    题号





    总分
    得分

    相关试卷

    河南省许昌市长葛市2024年九年级数学第一学期开学达标检测试题【含答案】:

    这是一份河南省许昌市长葛市2024年九年级数学第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省淮阳第一高级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】:

    这是一份河南省淮阳第一高级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河南省上蔡县第一初级中学九年级数学第一学期开学达标测试试题【含答案】:

    这是一份2025届河南省上蔡县第一初级中学九年级数学第一学期开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map