2024-2025学年河南省固始县数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是( )
A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3
2、(4分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
A.80分B.82分C.84分D.86分
3、(4分)如图,已知直线与相交于点(2,),若,则的取值范围是( )
A.B.C.D.
4、(4分)下列说法不正确的是( )
A.有两组对边分别平行的四边形是平行四边形
B.平行四边形的对角线互相平分
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
5、(4分)如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )
A.15尺B.16尺C.17尺D.18尺
6、(4分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是( )
A.①③B.①②C.②④D.③④
7、(4分)下列图形中,中心对称图形有
A.B.C.D.
8、(4分)15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm1,那么较小的多边形的面积是_____cm1.
10、(4分)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是_____.
11、(4分)对分式,,进行通分时,最简公分母是_____
12、(4分)在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.
13、(4分)已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知求代数式:x=2+,y=2-.
(1)求代数式x2+3xy+y2的值;
(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?
15、(8分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).
(1)画出关于点的中心对称的;
(2)画出绕点顺时针旋转后的;
(3)求(2)中线段扫过的面积.
16、(8分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:
(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;
(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;
(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.
17、(10分)先化简(1+)÷,再选择一个恰当的x值代人并求值.
18、(10分)如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.
(1)求菱形ABCD的面积;
(2)求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A、B两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比值为________.
20、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.
21、(4分)一个弹簧不挂重物时长,挂上重物后伸长的长度与所挂重的质量成正比。如果挂上的质量后弹簧伸长,则弹簧的总长(单位:)关于所挂重物(单位:)的函数解析式是_________.
22、(4分)正八边形的一个内角的度数是 度.
23、(4分)菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
25、(10分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD
26、(12分)已知:如图,在▱ABCD中,设=,=.
(1)填空:= (用、的式子表示)
(2)在图中求作+.(不要求写出作法,只需写出结论即可)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
找出方程的二次项系数,一次项系数,以及常数项即可.
【详解】
方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,
故选:B.
此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).解题关键在于找出系数及常熟项
2、D
【解析】
试题分析:利用加权平均数的公式直接计算即可得出答案.
由加权平均数的公式可知===86
考点:加权平均数.
3、B
【解析】
试题解析:根据题意当x>1时,若y1>y1.
故选B.
【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
4、D
【解析】
A选项:平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;
B选项:平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;
C选项:平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;
D选项:平行四边形的对角相等,邻角互补,故本选项错误;
故选D.
5、C
【解析】
我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.
【详解】
解:依题意画出图形,
设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,
因为B'E=16尺,所以B'C=8尺
在Rt△AB'C中,82+(x-2)2=x2,
解之得:x=17,
即芦苇长17尺.
故选C.
本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.
6、A
【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.
【详解】
①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;
②根据去括号法则;
③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;
④根据合并同类项法则.
根据等式基本性质的是①③.
故选A.
本题考查了等式的性质,利用了等式的性质1,等式的性质1.
7、B
【解析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选:B.
本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
试题分析:利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方可得.
解:两个相似多边形的一组对应边分别为3cm和4.5cm,
则相似比是3:4.5=1:3,
面积的比等于相似比的平方,即面积的比是4:9,
因而可以设较小的多边形的面积是4x(cm1),
则较大的是9x(cm1),
根据面积的和是130(cm1),
得到4x+9x=130,
解得:x=10,
则较小的多边形的面积是2cm1.
故答案为2.
10、
【解析】
由一次函数的交点与二元一次方程组解的关系可知方程组的解是.
故答案为
11、8xy1
【解析】
由于几个分式的分母分别是1x、4y、8xy1,首先确定1、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.
【详解】
根据最简公分母的求法得:
分式,,的最简公分母是8xy1,
故答案为8xy1.
此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.
12、
【解析】
利用轴对称最短路径求法,得出A点关于BD的对称点为C点,再利用连接EC交BD于点P即为最短路径位置,利用勾股定理求出即可.
【详解】
解:连接AC,EC,EC与BD交于点P,此时PA+PE的最小,即PA+PE就是CE的长度
∵正方形ABCD中,BE=2,AE=1,
∴BC=AB=3,
∴CE= == ,
故答案为.
本题考查利用轴对称求最短路径问题以及正方形的性质和勾股定理,利用正方形性质得出A,C关于BD对称是解题关键.
13、2或1
【解析】
分高AE在△ABC内外两种情形,分别求解即可.
【详解】
①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,
在Rt△AEC中,CE==5,
∴BC=BE+EC=14,
∴S平行四边形ABCD=BC×AE=14×12=1.
②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,
∴S平行四边形ABCD=BC×AE=12×4=2,
故答案为1或2.
本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.
三、解答题(本大题共5个小题,共48分)
14、(1)18;(2)1.
【解析】
(1)求出x+y,xy的值,利用整体的思想解决问题;
(2)根据菱形的面积等于对角线乘积的一半计算即可.
解:(1)∵x=,y=,
∴x+y=4,xy=4-2=2
∴x2+3xy+y2=(x+y)2+xy
=16+2
=18
(2)S菱形=xy==(4-2) =1
“点睛”本题考查菱形的性质,二次根式的加减乘除运算法则等知识,解题的关键是学会整体的思想进行化简计算,属于中考常考题型.
15、(1)见解析;(2)见解析;(3).
【解析】
(1)根据中心对称的性质找出各个对应点的坐标,顺次连接即可;
(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;
(3)BC扫过的面积=S扇形OBB1− S扇形OCC1,由此计算即可.
【详解】
(1)如图
(2)如图
(3)扫过的面积=S扇形OBB1− S扇形OCC1
本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.
16、(1)见解析;(2),见解析;(3),,(元).
【解析】
(1)根据已知各点坐标进而在坐标系中描出即可;
(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;
(3)利用利润=销量×(每件利润),进而得出答案.
【详解】
解:(1)如图:
(2)因为各点坐标xy乘积不变,猜想y与x为形式的反比例函数,
由题提供数据可知固定k值为24,
所以函数表达式为:,
连线如图:
(3)利润 = 销量 ×(每件利润),
利润为T,销量为y,由(2)知,
每件售价为1,则每件利润为x-1,
所以,
当最大时,最小,而此时最大,
根据题意,钥匙扣售价不超过8元,
所以时,(元).
此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.
17、x+1 当x=2时,原式=3
【解析】
根据分式化简的方法首先将括号里面的进行通分,然后利用分式的除法法则进行计算.选择x的值时不能取1、0和-1,其他的值随便可以自己选择.
【详解】
解:原式=
=
=x+1
当x=2时,
原式=x+1=2+1=3.
本题考查分式的化简求值,注意分式的分母不能为0.
18、(1)4;(2)
【解析】
(1)首先根据菱形的性质得到AC和BD垂直平分,结合题意可得a2+b2=5,进而得到ab=2,结合图形的面积公式即可求出面积;
(2)根据a2+b2=5,ab=2得到a+b的值,进而求出答案.
【详解】
解:(1)∵四边形ABCD是菱形,
∴BD垂直平分AC,
∵OA=a,OB=b,AB=,
∴a2+b2=5,
∵a,b满足:.
∴a2b2=4,
∴ab=2,
∴△AOB的面积=ab=1,
∴菱形ABCD的面积=4△AOB的面积=4;
(2)∵a2+b2=5,ab=2,
∴(a+b)2=a2+b2+2ab=7,
∴a+b=,
∴=.
本题主要考查了菱形的性质,解题的关键是根据菱形的对角线垂直平分得到a和b的数量关系,此题是一道非常不错的试题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
如图,连接AC、BC、BE、AE,根据图形可知四边形ACBE是正方形,进而利用正方形的性质求出即可
【详解】
如图,连接AC、BC、BE、AE,
∵五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,
∴四边形ACBE是正方形,
∵CD⊥AB,
∴点D为对角线AB、CE的交点,
∴CD=AB,
∴这个矩形的长与宽的比值为=2,
故答案为:2
此题主要考查了图形的剪拼,正确利用正方形的性质是解题关键.
20、 (﹣,2)
【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
【详解】
∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.
∵BC=OC=OA,
∴OC=3,OE=2,
∴CE==,
∴点C的坐标为(﹣,2).
故答案为:(﹣,2).
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
21、
【解析】
弹簧总长弹簧原来的长度挂上重物质量时弹簧伸长的长度,把相关数值代入即可.
【详解】
解:挂上的物体后,弹簧伸长,
挂上的物体后,弹簧伸长,
弹簧总长.
故答案为:.
本题考查了由实际问题抽象一次函数关系式的知识,得到弹簧总长的等量关系是解决本题的关键.
22、135
【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.
【详解】
正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为: 1080°÷8=135°,
故答案为135.
23、9 或
【解析】
如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.
【详解】
∵四边形ABCD是菱形,
∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC为等边三角形,
如果AC=9,则AB=9,
如果BD=9,
则∠ABD=30°,OB=,
∴OA=AB,
在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,
即AB2=(AB)2 +()2,
∴AB=3,
综上,菱形的边长为9或3.
本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.注意分类讨论思想的运用.
二、解答题(本大题共3个小题,共30分)
24、3或
【解析】
分析:先把右边的项移到左边,,根据完全平方公式变形为,根据算术平方根的非负性和偶次方的非负性列方程求出a、b的值,然后分两种情况利用勾股定理求第三边的长.
详解:由=8b-b2-16,
得-8b+b2+16=0,
得+(b-4)2=0.
又∵≥0,且(b-4)2≥0,
∴a-5=0,b-4=0,
∴a=5,b=4,
当a、b为直角边时,
第三边=;
当a为斜边时,
第三边=;
点睛:本题考查了算术平方根的非负性,偶次方的非负性,完全平方公式,勾股定理及分类讨论的数学思想. 分两种情况求解是正确解答本题的关键.
25、见解析
【解析】
利用SSS即可证明.
【详解】
证明:在△ACB与△CAD中
∴△ACB≌△CAD(SSS)
本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.
26、 (1) -;(2)
【解析】
(1)根据三角形法则可知:延长即可解决问题;
(2)连接BD.因为 即可推出
【详解】
解:(1)∵ =,=
∴
故答案为-.
(2)连接BD.
∵
∴
∴即为所求;
本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年贵州省铜仁市碧江区九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁市碧江区九年级数学第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西百色市保德县九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广西百色市保德县九年级数学第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市桃源中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市桃源中学九年级数学第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。