河南省延津县2024-2025学年数学九上开学统考模拟试题【含答案】
展开
这是一份河南省延津县2024-2025学年数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )
A.平均数但不是中位数B.平均数也是中位数
C.众数D.中位数但不是平均数
2、(4分)若从边形的一个顶点出发,最多可以作3条对角线,则该边形的内角和是( )
A.B.C.D.
3、(4分)如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距( )
A.4海里B.海里C.3海里D.5海里
4、(4分)在中,、分别是、边的中点,若,则的长是( )
A.9B.5C.6D.4
5、(4分)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是( )
A.7cmB.9 cmC.12cmD.14cm
6、(4分)在平面直角坐标系中,若点与点关于原点对称,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)下列多项式中,能用完全平方公式分解因式的是( )
A.B.C.D.
8、(4分)有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②正方形有四条对称轴;③平行四边形相邻两个内角的和等于;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质.其中正确的结论的个数有( )
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,的周长为26,点,都在边上,的平分线垂直于,垂足为点,的平分线垂直于,垂足为点,若,则的长为______.
10、(4分)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.
11、(4分)在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.
12、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
13、(4分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;
(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
15、(8分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.
(1)猜想∠MAN的大小是否变化,并说明理由;
(2)如图1,当N点恰为BC中点时,求DM的长度;
(3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.
16、(8分)我们给出如下定义,如果一个四边形有一条对角线能将其分成一个等边三角形和一个直角三角形,那么这个四边形叫做等垂四边形,这条对角线叫做这个四边形的等垂对角线.
(1)已知是四边形的等垂对角线,,均为钝角,且比大,那么________.
(2)如图,已知与关于直线对称,、两点分别在、边上,,,.求证:四边形是等垂四边形。
17、(10分)如图(1),在矩形中,分别是的中点,作射线,连接.
(1)请直接写出线段与的数量关系;
(2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;
(3)写出与的数量关系,并证明你的结论.
18、(10分)计算:
化简:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知不等式组的解集是,则的值是的___.
20、(4分)用反证法证明“若,则”时,应假设________.
21、(4分)若分式的值为0,则的值为________.
22、(4分)已知,则的值为________.
23、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)王老师从学校出发,到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).
(1)求王老师步行和骑共享单车的平均速度分别为多少?
(2)买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?
25、(10分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
(1)求证:;
(2)若.
①求证:;
②探索与的数量关系,并说明理由.
26、(12分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.
(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.
(2)请给出最节省费用的租车方案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平均数,中位数,众数的概念求解即可.
【详解】
45出现了三次是众数,
按从小到大的顺序排列得到第五,六个数分别为35,45,所以中位数为40;
由平均数的公式解得平均数为40;
所以40不但是平均数也是中位数.
故选:B.
考查平均数,中位数,众数的求解,掌握它们的概念是解题的关键.
2、B
【解析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=3,求出n的值,最后根据多边形内角和公式可得结论.
【详解】
由题意得:n-3=3,解得n=6,
则该n边形的内角和是:(6-2)×180°=720°,
故选B.
本题考查了多边形的对角线和多边形的内角和公式,熟记n边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.
3、B
【解析】
连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.
【详解】
解:如图,连接AC,
由题意得,∠CBA=90°,
∴AC==(海里),
故选B.
本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.
4、C
【解析】
根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.
【详解】
解:∵D、E分别是BC、AC边的中点,
∴DE是△CAB的中位线,
∴AB=2DE=6.
故选C.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.
5、A
【解析】
根据三角形中位线定理分别求出DE、EF、FG、DG,计算即可.
【详解】
解:∵BD、CE是△ABC的中线,
∴DE=BC=2,
同理,FG=BC=2,EF=OA=1.5,DG=OA=1.5,
∴四边形DEFG的周长=DE+EF+FG+DG=7(cm),
故选:A.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
6、C
【解析】
直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.
【详解】
解:∵点M(m,n)与点Q(−2,3)关于原点对称,
∴m=2,n=−3,
则点P(m+n,n)为(−1,−3),在第三象限.
故选:C.
此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.
7、C
【解析】
对下列各式进行因式分解,然后判断利用完全平方公式分解即可.
【详解】
解:A、,不能用完全平方公式分解因式,故A选项错误;
B、,不能用完全平方公式分解因式,故B选项错误;
C、,能用完全平方公式分解,故C选项正确;
D、不能用完全平方公式分解因式,故D选项错误;
故选:C.
本题考查了因式分解,熟练掌握因式分解的公式法是解本题的关键.
8、C
【解析】
根据特殊平行四边形的性质即可判断.
【详解】
①平行四边形既是中心对称图形,不是轴对称图形,故错误;②正方形有四条对称轴,正确;③平行四边形相邻两个内角的和等于,正确;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”,故错误;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质,正确.
故②③⑤正确,选C
此题主要考查特殊平行四边形的性质,解题的关键是熟知特殊平行四边形的特点与性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
【详解】
由题知为的垂直平分线,
,由题意知为的垂直平分线,.
,且,.
..
.又点,分别为,的中点,
.
本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.
10、1
【解析】
解∵等腰三角形的两条边长分别是3cm、7cm,
∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,
∴此三角形的腰长为7cm,底边长为3cm,
∴此等腰三角形的周长=7+7+3=1cm,
故答案为:1.
11、或2
【解析】
四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠ BED=120°算出即可
【详解】
画出示意图,分别讨论A,E在同侧和异侧的情况,
∵四边形ABCD为菱形,∠A=60,BD=3,
∴△ ABD为边长为3等边三角形,则AO=,
∵∠ BED=120°,则∠ OBE=30°,可得OE=,
则AE=,
同理可得OE’=,则AE’=,
所以AE的长度为或
本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.
12、y=﹣1x
【解析】
试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:
∵正比例函数y=kx的图象经过点A(﹣1,1),
∴﹣k=1,即k=﹣1.
∴正比例函数的解析式为y=﹣1x.
13、1
【解析】
试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.
∵E,F分别是AD,BD的中点, ∴EF为△ABD的中位线, ∴AB=2EF=4,
∵四边形ABCD为菱形, ∴AB=BC=CD=DA=4, ∴菱形ABCD的周长=4×4=1.
考点:(1)菱形的性质;(2)三角形中位线定理.
三、解答题(本大题共5个小题,共48分)
14、(1)排名顺序为乙、甲、丙;(2)录用甲.
【解析】
(1)分别求出甲、乙、丙的平均数,然后进行比较即可;
(2)由题意可知,只有乙不符合规定,甲:84×60%+80×30%+88×10%=83.2,丙:81×60%+84×30%+78×10%=81.6,所以录用甲.
【详解】
解:(1),
,
,
∴,
∴排名顺序为乙、甲、丙.
(2)由题意可知,只有乙不符合规定,
∵,
,
∵
∴录用甲.
本题考查了平均数与加权平均数,熟练运用平均数与加权平均数公式是解题的关键.
15、(1)∠MAN的大小没有变化,理由见解析;(2);(3).
【解析】
(1)由折叠知AD=AE、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,再证Rt△BAN≌Rt△EAN得∠BAN=∠EAN=∠BAE,根据∠MAN=∠EAM+∠EAN=(∠DAE+∠BAE)可得答案;
(2)由题意知EN=BN=CN=1,设DM=EM=x,则MC=2-x、MN=1+x,在Rt△MNC中,由MC2+CN2=MN2列出关于x的方程求解可得;
(3)将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,由旋转知DG=BQ=,AG=AQ,∠ADG=∠ABQ=∠ADB=45°,∠BAQ=∠DAG,证△GAH≌△QAH得GH=QH,设GH=QH=a,得BD=AB=2,BQ=,DQ=,DH=-a,在Rt△DGH中,由DG2+DH2=GH2可得关于a的方程,解之可得答案.
【详解】
(1)∠MAN的大小没有变化,
∵将△ADM沿AM折叠得到△AME,
∴△ADM≌△AEM,
∴AD=AE=2、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,
又∵AD=AB=2、∠D=∠B=90°,
∴AE=AB、∠B=∠AEM=∠AEN=90°,
在Rt△BAN和Rt△EAN中,
∵,
∴Rt△BAN≌Rt△EAN(HL),
∴∠BAN=∠EAN=∠BAE,
则∠MAN=∠EAM+∠EAN=∠DAE+∠BAE=(∠DAE+∠BAE)=∠BAD=45°,
∴∠MAN的大小没有变化;
(2)∵N点恰为BC中点,
∴EN=BN=CN=1,
设DM=EM=x,则MC=2﹣x,
∴MN=ME+EN=1+x,
在Rt△MNC中,由MC2+CN2=MN2可得(2﹣x)2+12=(1+x)2,
解得:x=,即DM=;
(3)如图,将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,
则△ABQ≌△ADG,
∴DG=BQ=、AG=AQ、∠ADG=∠ABQ=∠ADB=45°、∠BAQ=∠DAG,
∵∠MAN=∠BAD=45°,
∴∠BAQ+∠DAM=∠DAG+∠DAM=∠GAH=45°,
则∠GAH=∠QAH,
在△GAH和△QAH中,
∵,
∴△GAH≌△QAH(SAS),
∴GH=QH,
设GH=QH=a,
∵BD=AB=2,BQ=,
∴DQ=BD﹣BQ=,
∴DH=﹣a,
∵∠ADG=∠ADH=45°,
∴∠GDH=90°,
在Rt△DGH中,由DG2+DH2=GH2可得()2+(﹣a)2=a2,
解得:a=,即QH=.
本题主要考查四边形的综合问题,解题的关键是熟练掌握正方形的性质、全等三角形的判定与性质及旋转的性质等知识点.
16、(1)110°或150°;(2)见解析.
【解析】
(1)由题意分∠D=90°与∠DCA=90°两种情况,并利用四边形内角和定理求解即可;
(2)连接,先利用SAS证明,再证明是等边三角形,最后利用勾股定理的逆定理证明是直角三角形即可.
【详解】
解:(1)或.
如图1,当∠D=90°时,设=x°,则=(x-10)°,根据四边形内角和定理可得:
x+x-10+90+60=360,解得x=110,即110°;
如图2,当∠DCA=90°时,60°+90°=150°;
故答案为或.
(2)证明:如图3,连接.
∵和关于对称,
∴,,
又∵,
∴,
∴,
∵,
∴是等边三角形,
∴,
又∵,
∴,
∴,
∴是直角三角形,
∴四边形是等垂四边形.
本题考查了轴对称的性质、四边形的内角和、等边三角形的判定与性质、勾股定理的逆定理和对新定义问题中等垂四边形的理解,弄清等垂四边形的定义、熟练掌握等边三角形的判定和性质与勾股定理的逆定理是解题的关键.
17、(1)MD=MC;(2)见解析;(3)∠BME=3∠AEM,证明见解析.
【解析】
(1)由“SAS”可证△ADM≌△BCM,可得MD=MC;
(2)由题意可证四边形ADNM是平行四边形,可得AD∥MN,可得EF=FC,MF⊥EC,由线段垂直平分线的性质可得ME=MC;
(3)由等腰三角形的性质和平行线的性质可得∠BME=3∠AEM.
【详解】
解:(1)∵四边形ABCD是矩形,
∴AD=BC,∠A=∠B=90°,
∵点M是AB中点,
∴AM=BM,
∴△ADM≌△BCM(SAS),
∴MD=MC;
(2)∵M、N分别是AB、CD的中点,
∴AM=BM,CN=DN,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴DN=AM=CN=BM,
∴四边形ADNM是平行四边形,
∴AD∥MN,
∴,∠AEC=∠NFC=90°,
∴EF=CF,且MF⊥EC,
∴ME=MC;
(3)∠BME=3∠AEM,
证明:∵EM=MC,EF=FC,
∴∠EMF=∠FMC,
∵AB=2BC,M是AB中点,
∴MB=BC,
∴∠BMC=∠BCM,
∵MN∥AD,AD∥BC,
∴AD∥MN∥BC,
∴∠AEM=∠EMF,∠FMC=∠BCM,
∴∠AEM=∠EMF=∠FMC=∠BCM=∠BMC,
∴∠BME=3∠AEM.
本题是四边形综合题,考查了平行四边形的判定和性质,矩形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,(2)中证明EF=CF是本题的关键.
18、;
【解析】
(1)按顺序先分别算术平方根定义,零指数幂、负整数指数幂法则计算,然后再按运算顺序进行计算即可;
(2)原式通分并利用同分母分式的减法法则计算即可求出值.
【详解】
原式
=
=;
原式
=
=.
本题考查了实数的运算、异分母分式的加减运算,涉及了算术平方根、负指数幂、零指数幂的运算等,熟练掌握各运算的运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.
【详解】
,
由①得,,
由②得,,
所以,不等式组的解集是,
不等式组的解集是,
,,
解得,,
所以,.
故答案为:.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
20、
【解析】
了解反证法证明的方法和步骤,反证法的步骤中,首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设成立.
【详解】
反面是.
因此用反证法证明“若|a|
相关试卷
这是一份河南省新乡市2024-2025学年数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。