哈尔滨市重点中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】
展开
这是一份哈尔滨市重点中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题正确的是( )
A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.
B.两个全等的图形之间必有平移关系.
C.三角形经过旋转,对应线段平行且相等.
D.将一个封闭图形旋转,旋转中心只能在图形内部.
2、(4分)下列图形中,不属于中心对称图形的是( )
A.圆B.等边三角形C.平行四边形D.线段
3、(4分)计算的结果为( )
A.2B.-4C.4D.±4
4、(4分)下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
5、(4分)如图,菱形中,点、分别是、的中点,若,,则的长为( )
A.B.C.D.
6、(4分)关于的分式方程有增根,则的值为
A.0B.C.D.
7、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )
A.16B.8C.D.4
8、(4分)下表是某校名男子足球队的年龄分布:
该校男子足球队队员的平均年龄为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
10、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
11、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
12、(4分)某校对初一全体学生进行一次视力普查,得到如下统计表,视力在这个范围的频率为__________.
13、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时的速度向南偏东 50°航行,乙船向北偏东 40°航行,3小时后,甲船到达B岛,乙船到达C岛,若C,B两岛相距60海里,问乙船的航速是多少?
15、(8分)先观察下列等式,再回答问题:
① =1+1=2;
②=2+ =2 ;
③=3+=3;…
(1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用 n(n 为正整数)表示的等式,并用所学知识证明.
16、(8分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.
(1)求∠ADC的度数;
(2)求四边形ABCD的面积.
17、(10分)如图,已知的三个顶点坐标为,,.
(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标 ;
(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标 ;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标 .
18、(10分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图, 是 的中位线, 平分 交于 , ,则 的长为________.
20、(4分)因式分解:=______.
21、(4分)如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
22、(4分)一次函数 的图象如图所示,则关于的不等式的解集为__________.
23、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.
(1)探索发现
如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.
(2)归纳证明
证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.
(3)拓展应用
如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.
25、(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
(1)求证:四边形是菱形
(2)若,,求四边形的面积
26、(12分)某公司对应聘者A,B进行面试,并按三个方面给应聘者打分,每方面满分20分,打分结果如下表:
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:1:3的比例确定两人的成绩,通过计算说明谁将被录用.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.
【详解】
解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;
B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;
C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;
D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.
故选:A.
本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
2、B
【解析】
试题分析:根据中心对称图形的概念求解.
解:A、是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项正确;
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误.
故选B.
【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、C
【解析】
根据算术平方根的定义进行计算即可.
【详解】
解:=4,
故选C.
本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.
4、C
【解析】
根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.
故选C.
本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
5、A
【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO,由勾股定理可求BO=4,可得BD=8,由三角形中位线定理可求EF的长
【详解】
解:如图,连接BD,交AC于点O,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO=3,BO=DO,
∴,
∴BD=2BO=8,
∵点E、F分别是AB、AD的中点,
∴EF=BD=4,
故选:A.
本题考查了菱形的性质,三角形中位线定理,本题中根据勾股定理求OB的值是解题的关键.
6、D
【解析】
分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.
详解:方程两边都乘(x+2),
得:x-5=m,
∵原方程有增根,
∴最简公分母:x+2=0,
解得x=-2,
当x=-2时,m=-1.
故选D.
点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
7、A
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
【详解】
解:∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,
∴BC=2EF=2×2=4,
∴菱形ABCD的周长=4BC=4×4=1.
故选A.
本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
8、C
【解析】
根据加权平均数的计算公式进行计算即可.
【详解】
该校男子足球队队员的平均年龄为 =15(岁),
故选:C.
此题考查加权平均数,解题关键在于掌握运算公式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
【详解】
解:∵
∴
∵关于x的方程的解是负数
∴
∴
解得
本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
10、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
11、1≤y≤1
【解析】
将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.
【详解】
∵一次函数的图象与x轴交点的横坐标为,
∴这个交点的坐标为(6,0),
把(6,0)代入中得:
,
,
∵<0,y随x的增大而减小,
当时,=1.
当时,.
则.
故答案是:.
本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
12、0.1
【解析】
【分析】先求出视力在4.9≤x
相关试卷
这是一份鄂州市重点中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。
这是一份东营市重点中学2024年九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。