![广西防城港市防城区2024年数学九上开学复习检测模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16269598/0-1729377308398/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广西防城港市防城区2024年数学九上开学复习检测模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16269598/0-1729377308447/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广西防城港市防城区2024年数学九上开学复习检测模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16269598/0-1729377308472/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广西防城港市防城区2024年数学九上开学复习检测模拟试题【含答案】
展开
这是一份广西防城港市防城区2024年数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,四象限,解答题,六月份平均增长率为.等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,的对角线与相交于点,,垂足为,,,,则的长为( )
A.B.C.D.
2、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长为( )
A.5B.7C.D.或5
3、(4分)下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4、(4分)已知:在中,,求证:若用反证法来证明这个结论,可以假设
A.B.C.D.
5、(4分)如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
A.B.C.D.
6、(4分)已知反比例函数,下列结论不正确的是( ).
A.该函数图像经过点(-1,1)B.该函数图像在第二、四象限
C.当x1时,
7、(4分)关于一次函数y=﹣2x+3,下列结论正确的是( )
A.图象过点(1,﹣1)B.图象经过一、二、三象限
C.y随x的增大而增大D.当x>时,y<0
8、(4分)在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为( )
A.3B.2C.1D.-1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若式子有意义,则x的取值范围是 .
10、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
11、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
12、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
13、(4分)函数y=﹣6x+5的图象是由直线y=﹣6x向_____平移_____个单位长度得到的.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
15、(8分)某中学需要添置一批教学仪器,方案一:到厂家购买,每件原价40元,恰逢厂家促销活动八折出售;方案二学校自己制作,每件20元,另外需要制作工具的租用费600元;设该学校需要购买仪器x件,方案一与方案二的费用分别为y1和y2(元)
(1)请分别求出y1,y2关于x的函数表达式;
(2)若学校需要购买仪器30~60(含30和60)件,问采用哪种方案更划算?请说明理由.
16、(8分)解方程
①2x(x-1)=x-1; ②(y+1)(y+2)=2
17、(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接BO和FO.
(1)当点E为AB中点时,求EO的长度;
(2)求线段AO的取值范围;
(3)当EO⊥FO时,连接EF.求证:BE+DF>EF.
18、(10分)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:
(1)甲、乙两车行驶时的速度分别为多少?
(2)乙车出发多少分钟后第一次与甲车相遇?
(3)甲车中途因故障停止行驶的时间为多少分钟?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知▱ABCD的两条对角线相交于O,若∠ABC=120°,AB=BC=4,则OD=______.
20、(4分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.
21、(4分)如果根式有意义,那么的取值范围是_________.
22、(4分)如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.
23、(4分)计算:﹣=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)求不等式组的正整数解.
25、(10分)某农机厂四月份生产某型号农机台,第二季度(包括四、五、六三个月)共生产该型号农机台.求该农机厂五、六月份平均增长率.
26、(12分) “绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买两种设备的方案;
(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵四边形ABCD是平行四边形,,
.
又,
在中,,
故选D.
错因分析:中等题。选错的原因是:1.对平行四边形的性质没有掌握;2.不能利用勾股定理的逆定理得出;3.未能利用的两种计算方法得到线段间的关系.
2、D
【解析】
分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.
3、A
【解析】
试题分析:根据轴对称图形与中心对称图形的概念求解,解答轴对称图形问题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;解答中心对称图形问题的关键是要寻找对称中心,旋转180度后与原图重合.
A、是轴对称图形,也是中心对称图形,故正确;
B、不是轴对称图形,也不是中心对称图形,故错误;
C、是轴对称图形,不是中心对称图形,故错误;
D、不是轴对称图形,也不是中心对称图形,故错误.
考点:1.中心对称图形;2.轴对称图形.
4、C
【解析】
反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.
【详解】
已知:在中,,求证:若用反证法来证明这个结论,可以假设,由“等角对等边”可得AB=AC,这与已知矛盾,所以
故选C
本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.
5、D
【解析】
依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为1.依此即可求解.
【详解】
解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为1.
故选:D.
此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.
6、C
【解析】
∵∴A是正确的;反比例函数k=-1,图象在第二、四象限上,∴B是正确的;当xl时, ∴D是正确的.故选C
7、D
【解析】
A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.
解:A、当x=1时,y=1.所以图象不过(1,-1),故错误;
B、∵-2<0,3>0,∴图象过一、二、四象限,故错误;
C、∵-2<0,∴y随x的增大而减小,故错误;
D、画出草图.
∵当x>时,图象在x轴下方,∴y<0,故正确.
故选D.
“点睛”本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.
8、C
【解析】
根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.
【详解】
解:∵点A(2,m),
∴点A关于x轴的对称点B(2,−m),
∵B在直线y=−x+1上,
∴−m=−2+1=−1,
∴m=1,
故选C.
此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、且
【解析】
∵式子在实数范围内有意义,
∴x+1≥0,且x≠0,
解得:x≥-1且x≠0.
故答案为x≥-1且x≠0.
10、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
11、或或
【解析】
由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
【详解】
解:∵∠C=90°,∠A=30°,BC=9,
∴∠B=60°,AB=2BC=18,
①当∠BQP=90°时,如图1所示:则AC∥PQ,
∴∠BPQ=30°,BP=2BQ,
∵BP=18-3t,BQ=t,
∴18-3t=2t,
解得:t=;
②当∠QPB=90°时,如图2所示:
∵∠B=60°,
∴∠BQP=30°,
∴BQ=2BP,
若0<t<6时,
则t=2(18-3t),
解得:t=,
若6<t≤9时,
则t=2(3t-18),
解得:t=;
故答案为:或或.
本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
12、1
【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.
【详解】
解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.
本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.
13、上 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:函数y=-6x+1的图象是由直线y=-6x向上平移1个单位长度得到的.
故答案为:上,1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)证明见解析.
【解析】
(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
【详解】
(1)在△ADE与△CDE中,
,
∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC,
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180× =45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
15、(1)y1=32x,y2=20x+600;(2)30≤x<50时,方案一划算.
【解析】
(1)根据题意得到y1,y2与x的关系即可;(2)分别根据题意列出不等式直接解题即可
【详解】
(1)由题意,可得:y1=40×0.8x=32x,y2=20x+600;
(2)当32x=20x+600时,
解得:x=50,此时y1=y2,即x=50时,两种方案都一样,
当32x>20x+600时,
解得:x>50,此时y1>y2,即50<x≤60时,方案二划算,
当32x<20x+600时,
解得:x<50,此时y1<y2,即30≤x<50时,方案一划算.
本题主要考查一次函数与不等式的简单应用,本题关键在于理解题意找出y1,y2与x的关系
16、 (1)x1=1,x2=; (2) y1=0,y2=-3
【解析】
【分析】()用因式分解法求解;(2)先去括号整理,再用因式分解法求解.
【详解】
解:①2x(x-1)=x-1
(2x-1)(x-1)=0
所以,2x-1=0或x-1=0
所以,x1=1, x2=;
②(y+1)(y+2)=2
y2+3y=0
y(y+3)=0
所以,y=0或y+3=0
所以,y1=0,y2=-3
【点睛】本题考核知识点:解一元二次方程.解题关键点:用因式分解法解方程.
17、(1);(2)1<AO<4;(3)见解析.
【解析】
(1) O是中点,E是中点,所以OE=BC=;
(2) 在△ACD中利用三角形的第三边长小于两边之和,大于两边只差;
(3) 延长FO交BC于G点,就可以将BE,FD,EF放在一个三角形中,利用三角形两边之和大于第三边即可.
【详解】
(1)解:∵四边形ABCD为平行四边形,
∴BC=AD=3,OA=OC,
∵点E为AB中点,
∴OE为△ABC的中位线,
∴OE=BC=;
(2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,
而OA=OC,
∴5﹣3<2AO<5+3,
∴1<AO<4;
(3)证明:延长FO交BC于G点,连接EG,如图,
∵四边形ABCD为平行四边形,
∴OB=OD,BC∥AD,
∴∠OBG=∠ODF,
在△OBG和△ODF中
,
∴△OBG≌△ODF,
∴BG=DF,OG=OF,
∵EO⊥OF,
∴EG=EF,
在△BEG中,BE+BG>EG,
∴BE+FD>EF.
本题主要考查中位线的性质,以及通过构造新的全等三角形,应用三角形两边之和大于第三边性质来比较线段的关系.
18、(1)甲车的速度是千米每分钟,乙车的速度是1千米每分钟;
(2)乙车出发20分钟后第一次与甲车相遇;
(3)甲车中途因故障停止行驶的时间为25分钟.
【解析】
(1)分别根据速度=路程÷时间列式计算即可得解;
(2)设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;
(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.
【详解】
解:(千米/分钟),
∴甲车的速度是千米每分钟.
(千米/分钟),
∴ 乙车的速度是1千米每分钟.
(2)设甲车离A地的距离S与时间t的函数解析式为:()
将点(10,0)(70,60)代入得:
解得:,即
当y=20时,解得t=30,
∵甲车出发10分钟后乙车才出发,
∴ 30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.
(3)∵(分钟)
∵ 70-30-15=25(分钟),
∴ 甲车中途因故障停止行驶的时间为25分钟.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据菱形的判定可得▱ABCD是菱形,再根据性质求得∠BCO的度数,可求OB,进一步求得OD的长.
【详解】
解:∵四边形ABCD是平行四边形,AB=BC=4,
∴▱ABCD是菱形,
∵∠ABC=110°,
∴∠BCO=30°,∠BOC=90°,
∴OB==1,
∴OD=1.
故答案为:1.
本题主要考查了平行四边形的性质、菱形的性质、30度角所对的直角边等于斜边的一半,解决问题的关键是掌握:菱形的对角线平分每一组对角.
20、15
【解析】
l1∥l2∥l3,
,
所以,所以AC=15.
21、
【解析】
根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.
【详解】
根据题意得:x+2⩾0,
解得:x⩾−2.
故答案是:x⩾−2.
此题考查二次根式有意义的条件,难度不大
22、6
【解析】
根据题意,分析P的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求出AE,即可求解.
【详解】
根据题意,当P在BC上时,三角形的面积增大,结合图2可得BC=4;
当P在CD上时,三角形的面积不变,结合图2可得CD=3;
当P在AD上时,三角形的面积变小,结合图2可得AD=5;
过D作DE⊥AB于E,
∵AB∥CD,AB⊥BC,
∴四边形DEBC为矩形,
∴EB=CD=3,DE=BC=4,
∴AE=
∴AB=AE+EB=6.
此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.
23、
【解析】
根据二次根式的性质,进行计算即可解答
【详解】
解:﹣.
故答案为:﹣ .
此题考查二次根式的化简,解题关键在于掌握运算法则
二、解答题(本大题共3个小题,共30分)
24、正整数解是1,2,3,1.
【解析】
先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.
【详解】
解:,
解不等式①,得x>﹣2,
解不等式②,得x≤,
不等式组的解集是﹣2<x≤,
不等式组的正整数解是1,2,3,1.
本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.
25、五、六月份平均增长率为.
【解析】
根据题意设出合理未知数,列出方程求解即可.
【详解】
解:设五、六月份平均增长率为.
根据题意得,
解得,(不符合题意舍去)
答:五、六月份平均增长率为.
本题主要考查二次函数的增长率的应用问题,关键在于根据题意列方程,注意一个月的产量等于增长的加上原来的.
26、(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.
【解析】
(1)设该景区购买A种设备为x台、则B种设备购买(10-x)台,其中 0 ≤x ≤10,根据购买的设备日处理能力不低于140吨,列不等式,求出解集后再根据x的范围以及x为整数即可确定出具体方案;
(2)针对(1)中的方案逐一进行计算即可做出判断.
【详解】
(1)设该景区购买设计 A型设备为x台、则 B型设备购买(10-x)台,其中 0 ≤x ≤10,
由题意得:12x+15(10-x)≥140,
解得x≤ ,
∵0 ≤x ≤10,且x是整数,
∴x=3,2,1,0,
∴B型相应的台数分别为7,8,9,10,
∴共有4种方案:
方案一:A型设备 3 台、B型设备 7 台;
方案二:A型设备 2 台、B型设备 8 台;
方案三:A型设备 1 台、B型设备 9 台;
方案四:A型设备 0 台、B型设备 10 台.
(2)方案二费用最少,理由如下:
方案一购买费用: 3 ×3+4.4 ×7=39.8 (万元)<40 (万元),∴费用为 39.8(万元);
方案二购买费用: 2 ×3+4.4 ×8=41.2 (万元)>40 (万元),
∴ 费用为 41.2 ×90%=37.08(万元);
方案三购买费用:3 ×1+4.4 ×9=42.6 (万元)>40 (万元),
∴ 费用为 42.6 ×90%=38.34(万元);
方案四购买费用:4.4 ×10=44 (万元)>40 (万元), ∴ 费用为 44 ×90%=39.6(万元).
∴方案二费用最少,即A型设备2台、B型设备8台时费用最少.
本题考查了一元一次不等式的应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届广西岳池县九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广西防城港市防城区港市数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西防城港市九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)