2025届广西岳池县九上数学开学复习检测模拟试题【含答案】
展开
这是一份2025届广西岳池县九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)二次函数y=ax1+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②1a+b=0;③若m为任意实数,则a+b>am1+bm;④a﹣b+c>0;⑤若ax11+bx1=ax11+bx1,且x1≠x1,则x1+x1=1.其中,正确结论的个数为( )
A.1B.1C.3D.4
2、(4分)若关于的一元二次方程的常数项为0,则的值等于( )
A.1B.3C.1或3D.0
3、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是( )
A.1B.2C.1D.4
4、(4分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是( )
A.3 B.2 C. D.4
5、(4分)以下是某市自来水价格调整表(部分):(单位:元/立方米)
则调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象是( )
A.B.C.D.
6、(4分)一次函数y=x﹣1的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)一次函数y=ax+b和y=bx+a的图象可能是( )
A.B.C.D.
8、(4分)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是( )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)
10、(4分)现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.则线段B′C= .
11、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
12、(4分)如图,点A在双曲线y=上,AB⊥y轴于B,S△ABO =3,则k=__________
13、(4分)如果多边形的每个外角都是40°,那么这个多边形的边数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)因式分解:;
(2)计算:
15、(8分)(1)计算:
(2)若,,求的值
16、(8分)解不等式组:,并把解集表示在数轴上;
17、(10分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.
(1)已知点F在线段BC上.
①若AB=BE,求∠DAE度数;
②求证:CE=EF;
(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.
18、(10分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果多边形的每个外角都是40°,那么这个多边形的边数是_____.
20、(4分)使代数式有意义的x的取值范围是_______.
21、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
22、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.
23、(4分)若点位于第二象限,则x的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).
(1)画出△ABC向下平移5个单位后的△A1B1C1;
(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.
25、(10分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.
(1)求6年1班40人一分钟内平均每人跳绳多少个?
(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?
26、(12分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由抛物线的开口方向、对称轴位置、与y轴的交点位置判断出a、b、c与0的关系,进而判断①;根据抛物线对称轴为x==1判断②;根据函数的最大值为:a+b+c判断③;求出x=﹣1时,y<0,进而判断④;对ax11+bx1=ax11+bx1进行变形,求出a(x1+x1)+b=0,进而判断⑤.
【详解】
解:①抛物线开口方向向下,则a<0,
抛物线对称轴位于y轴右侧,则a、b异号,即b>0,
抛物线与y轴交于正半轴,则c>0,
∴abc<0,故①错误;
②∵抛物线对称轴为直线x==1,
∴b=﹣1a,即1a+b=0,故②正确;
③∵抛物线对称轴为直线x=1,
∴函数的最大值为:a+b+c,
∴当m≠1时,a+b+c>am1+bm+c,即a+b>am1+bm,故③错误;
④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,
∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,
∴当x=﹣1时,y<0,
∴a﹣b+c<0,故④错误;
⑤∵ax11+bx1=ax11+bx1,
∴ax11+bx1﹣ax11﹣bx1=0,
∴a(x1+x1)(x1﹣x1)+b(x1﹣x1)=0,
∴(x1﹣x1)[a(x1+x1)+b]=0,
而x1≠x1,
∴a(x1+x1)+b=0,即x1+x1=﹣,
∵b=﹣1a,
∴x1+x1=1,故⑤正确.
综上所述,正确的是②⑤,有1个.
故选:B.
本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求1a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
2、B
【解析】
根据一元二次方程的定义及常数项为0列出不等式和方程,求出m的值即可.
【详解】
解:根据题意,得:,
解得:m=1.
故选:B.
考查了一元二次方程的定义和一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
3、C
【解析】
根据正方形基本性质和相似三角形性质进行分析即可.
【详解】
①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;
②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;
③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
④错误.
过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴
EF=DE=2,GF=1,
∴EG=5,
∴
∴S△FGC=S△GCE﹣S△FEC=
故选C.
考核知识点:相似三角形性质.
4、A
【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.
【详解】
在△ABC中,D、E分别是BC、AC的中点,
∴DE∥AB,
∴∠EDC=∠ABC.
∵BF平分∠ABC,
∴∠EDC=2∠FBD.
在△BDF中,∠EDC=∠FBD+∠BFD,
∴∠DBF=∠DFB,
∴FD=BD=BC=×6=1.
故选:A.
考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
5、B
【解析】
根据水费等于单价乘用水量,30立方米内单价低,水费增长的慢,超过30立方米的部分水费单价高,水费增长快,可得答案.
【详解】
解:30立方米内每立方是0.82元,超过30立方米的部分每立方是1.23元,
调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象先增长慢,后增长快,B符合题意,
故选:B.
本题考查了函数图象,单价乘以用水量等于水费,单价低水增长的慢,单价高水费增长的快.
6、B
【解析】
分析:根据函数图像的性质解决即可.
解析: 的图像经过第一、三、四象限,所以不经过第二象限.
故选B.
7、D
【解析】
对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求即可.
【详解】
A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;
B、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以B选项错误;
C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b
相关试卷
这是一份2025届广西玉林市博白县九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广西崇左市宁明县九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西昭平县数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。